[Réponse linéaire pour les déformations lisses d'applications unimodales génériques non-uniformément hyperboliques]
Nous considérons des familles
We consider
Keywords: smooth unimodal maps, linear response, Benedicks-Carleson, SRB measures, absolutely continuous invariant measures, transfer operator
Mot clés : applications unimodales lisses, réponse linéaire, Benedicks-Carleson, mesures SRB, mesures invariantes absolument continues, opérateur de transfert
@article{ASENS_2012_4_45_6_861_0, author = {Baladi, Viviane and Smania, Daniel}, title = {Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {861--926}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 45}, number = {6}, year = {2012}, doi = {10.24033/asens.2179}, mrnumber = {3075107}, zbl = {1277.37045}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2179/} }
TY - JOUR AU - Baladi, Viviane AU - Smania, Daniel TI - Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps JO - Annales scientifiques de l'École Normale Supérieure PY - 2012 SP - 861 EP - 926 VL - 45 IS - 6 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2179/ DO - 10.24033/asens.2179 LA - en ID - ASENS_2012_4_45_6_861_0 ER -
%0 Journal Article %A Baladi, Viviane %A Smania, Daniel %T Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps %J Annales scientifiques de l'École Normale Supérieure %D 2012 %P 861-926 %V 45 %N 6 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2179/ %R 10.24033/asens.2179 %G en %F ASENS_2012_4_45_6_861_0
Baladi, Viviane; Smania, Daniel. Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 45 (2012) no. 6, pp. 861-926. doi : 10.24033/asens.2179. https://www.numdam.org/articles/10.24033/asens.2179/
[1] Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys. 296 (2010), 739-767. | MR | Zbl
, & ,[2] Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 595-637. | Numdam | MR | Zbl
, & ,[3] Infinitesimal perturbations of rational maps, Nonlinearity 15 (2002), 695-704. | MR | Zbl
,[4] Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math 154 (2003), 451-550. | MR | Zbl
, & ,[5] Bifurcations of unimodal maps, in Dynamical systems. Part II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., 2003, 1-22. | MR | Zbl
& ,[6] Phase-parameter relation and sharp statistical properties for general families of unimodal maps, in Geometry and dynamics, Contemp. Math. 389, Amer. Math. Soc., 2005, 1-42. | MR | Zbl
& ,[7] On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys. 275 (2007), 839-859. | MR | Zbl
,[8] Linear response despite critical points, Nonlinearity 21 (2008), T81-T90. | MR | Zbl
,[9] Dynamical determinants via dynamical conjugacies for postcritically finite polynomials. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays, J. Statist. Phys. 108 (2002), 973-993. | MR | Zbl
, & ,[10] Linear response formula for piecewise expanding unimodal maps, Nonlinearity 21 (2008), 677-711. | MR | Zbl
& ,[11] Analyticity of the SRB measure for holomorphic families of quadratic-like Collet-Eckmann maps, Proc. Amer. Math. Soc. 137 (2009), 1431-1437. | MR | Zbl
& ,[12] Smooth deformations of piecewise expanding unimodal maps, Discrete Contin. Dyn. Syst. 23 (2009), 685-703. | MR | Zbl
& ,[13] Alternative proofs of linear response for piecewise expanding unimodal maps, Ergodic Theory and Dynam. Systems 30 (2010), 1-20. | MR | Zbl
& ,[14] Corrigendum to: Linear response formula for piecewise expanding unimodal maps, Nonlinearity 25 (2012), 2203-2205. | MR | Zbl
& ,[15] Strong stochastic stability and rate of mixing for unimodal maps, Ann. Sci. École Norm. Sup. 29 (1996), 483-517. | EuDML | Numdam | MR | Zbl
& ,[16] The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169. | MR | Zbl
& ,[17] Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003), 621-646. | EuDML | Numdam | MR | Zbl
, & ,[18] Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), 509-533. | MR | Zbl
, , & ,[19] Smooth Anosov flows: correlation spectra and stability, J. Mod. Dyn. 1 (2007), 301-322. | MR | Zbl
& ,[20] Does the complex susceptibility of the Hénon map have a pole in the upper-half plane? A numerical investigation, Nonlinearity 20 (2007), 2883-2895. | MR | Zbl
,[21] On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004), 389-449. | MR | Zbl
,[22] La dérivée schwarzienne en dynamique unimodale, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 329-332. | Zbl
, & ,[23] A simple framework to justify linear response theory, Nonlinearity 23 (2010), 909-922. | MR | Zbl
& ,[24] Sur un théorème spectral et son application aux noyaux lipchitziens, Proc. Amer. Math. Soc. 118 (1993), 627-634. | MR | Zbl
,[25] Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), 581-597. | EuDML | MR | Zbl
, , & ,[26] Stochastic stability in some dynamical systems, Monatshefte Math. 94 (1982), 313-333. | EuDML | MR | Zbl
,[27] Exponents, attractors and Hopf decompositions for interval maps, Ergodic Theory Dynam. Systems 10 (1990), 717-744. | MR | Zbl
,[28] Continuity properties of transport coefficients in simple maps, Nonlinearity 21 (2008), 1719-1743. | MR | Zbl
, & ,[29] Stability of the spectrum for transfer operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 141-152. | EuDML | Numdam | MR | Zbl
& ,[30] T. G. Keller & Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), 633-680. | MR | Zbl
[31] Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000), 743-762. | EuDML | MR | Zbl
,[32] Topological invariance of generic non-uniformly expanding multimodal maps, Math. Res. Lett. 13 (2006), 343-357. | MR | Zbl
& ,[33] Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 331-349. | MR | Zbl
,[34] The multipliers of periodic points in one-dimensional dynamics, Nonlinearity 12 (1999), 217-227. | MR | Zbl
& ,[35] Dinamiche espansive unidimensionali: dipendenza della misura invariante da un parametro, Master's Thesis, Roma 2 (2007).
,[36] One-dimensional dynamics, Ergebnisse Math. Grenzg., Springer, 1993. | MR | Zbl
& ,
[37] On some dynamical properties of
[38] Symmetric
[39] Some dynamical properties of
[40] Topological invariance of the Collet-Eckmann property for
[41] Non-uniform hyperbolicity and universal bounds for
[42] Hyperbolicity properties of
[43] Invariant measures exist under a summability condition for unimodal maps, Invent. Math. 105 (1991), 123-136. | EuDML | MR | Zbl
& ,[44] Statistical properties of topological Collet-Eckmann maps, Ann. Sci. École Norm. Sup. 40 (2007), 135-178. | EuDML | Numdam | MR | Zbl
& ,[45] Differentiation of SRB states, Comm. Math. Phys. 187 (1997), 227-241. | MR | Zbl
,[46] General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium, Phys. Lett. A 245 (1998), 220-224. | MR | Zbl
,[47] Differentiation of SRB states: Corrections and complements, Comm. Math. Phys. 234 (2003), 185-190. | MR | Zbl
,[48] Application of hyperbolic dynamics to physics: some problems and conjectures, Bull. Amer. Math. Soc. 41 (2004), 275-278. | MR | Zbl
,
[49] Differentiating the absolutely continuous invariant measure of an interval map
[50] A review of linear response theory for general differentiable dynamical systems, Nonlinearity 22 (2009), 855-870. | MR | Zbl
,
[51] Structure and
[52] Private communication by e-mail, 29 November 2009.
,[53] Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys. 150 (1992), 217-236. | MR | Zbl
& ,[54] Topological conditions for positive Lyapunov exponent in unimodal maps, Thèse, St John's College, 1994.
,[55] One-parameter families of smooth interval maps, density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc. 138 (2010), 4443-4446. | MR | Zbl
,[56] Positive Lyapunov exponent for generic one-parameter families of unimodal maps, J. d'Anal. Math. 64 (1994), 121-172. | MR | Zbl
, & ,[57] Positive Lyapunov exponents in families of one-dimensional dynamical systems, Invent. Math. 111 (1993), 113-137. | EuDML | MR | Zbl
,[58] On continuity of Bowen-Ruelle-Sinai measures in families of one-dimensional maps, Comm. Math. Phys. 177 (1996), 1-11. | MR | Zbl
,[59] Stochastic dynamics of deterministic systems, 1997, 21 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro (1997), available on http://w3.impa.br/~viana (under Lecture Notes).
,[60] Topological and metrical conditions for Collet-Eckmann unimodal maps, Acta Math. Appl. Sinica (English Ser.) 17 (2001), 350-360. | MR | Zbl
,[61] Decay of correlations for certain quadratic maps, Comm. Math. Phys. 146 (1992), 123-138. | MR | Zbl
,[62] Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998), 585-650. | MR | Zbl
,[63] What are SRB measures, and which dynamical systems have them? Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthday, J. Statist. Phys. 108 (2002), 733-754. | MR | Zbl
,Cité par Sources :