Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 43 (2010) no. 4, pp. 659-718.

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S. We give a condition on S that ensures that there always exists an holomorphic transformation to a normal form. If this condition is not satisfied, we also show, that under some reasonable assumptions, each perturbation of S admits a Gevrey formal normalizing transformation to a Gevrey formal normal form. Finally, we give an exponentially good approximation of the dynamic by a partial normal form.

Dans cet article, nous étudions des germes de champs de vecteurs holomorphes qui sont des perturbations « d’ordres supérieurs » de champs de vecteurs quasi-homogènes au voisinage de l’origine de n , point fixe des champs considérés. Nous définissons une condition « diophantienne » sur le champ quasi-homogène initial S qui assure que si une telle perturbation de S est formellement conjuguée à S alors elle l’est aussi holomorphiquement. Nous étudions le problème de mise sous forme normale relativement à S. Nous donnons une condition suffisante assurant l’existence d’une transformation holomorphe vers une forme normale. Lorsque cette condition n’est pas satisfaite, nous montrons néanmoins, sous une condition raisonnable, l’existence d’une normalisation formelle Gevrey vers une forme normale Gevrey. Enfin, nous montrons l’existence d’une approximation exponentiellement bonne de la dynamique par une forme normale partielle.

DOI: 10.24033/asens.2131
Classification: 37F50,  37F75,  37J40,  37J15,  34F15,  34C20,  34M35
Keywords: differential equations, small divisors, resonances, normal forms
@article{ASENS_2010_4_43_4_659_0,
     author = {Lombardi, Eric and Stolovitch, Laurent},
     title = {Normal forms of analytic perturbations of quasihomogeneous vector fields: {Rigidity,} invariant analytic sets and exponentially small approximation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {659--718},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 43},
     number = {4},
     year = {2010},
     doi = {10.24033/asens.2131},
     zbl = {1202.37071},
     mrnumber = {2722512},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2131/}
}
TY  - JOUR
AU  - Lombardi, Eric
AU  - Stolovitch, Laurent
TI  - Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2010
DA  - 2010///
SP  - 659
EP  - 718
VL  - Ser. 4, 43
IS  - 4
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2131/
UR  - https://zbmath.org/?q=an%3A1202.37071
UR  - https://www.ams.org/mathscinet-getitem?mr=2722512
UR  - https://doi.org/10.24033/asens.2131
DO  - 10.24033/asens.2131
LA  - en
ID  - ASENS_2010_4_43_4_659_0
ER  - 
%0 Journal Article
%A Lombardi, Eric
%A Stolovitch, Laurent
%T Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation
%J Annales scientifiques de l'École Normale Supérieure
%D 2010
%P 659-718
%V Ser. 4, 43
%N 4
%I Société mathématique de France
%U https://doi.org/10.24033/asens.2131
%R 10.24033/asens.2131
%G en
%F ASENS_2010_4_43_4_659_0
Lombardi, Eric; Stolovitch, Laurent. Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 43 (2010) no. 4, pp. 659-718. doi : 10.24033/asens.2131. http://www.numdam.org/articles/10.24033/asens.2131/

[1] V. I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir, 1980. | Zbl

[2] V. V. Basov, The generalized normal form and the formal equivalence of two-dimensional systems with zero quadratic approximation. III, Differ. Uravn. 42 (2006), 308-319. | MR | Zbl

[3] G. R. Belitskii, Invariant normal forms of formal series, Funct. Anal. Appl. 13 (1979), 46-47. | MR | Zbl

[4] G. R. Belitskii, Normal forms relative to a filtering action of a group, Trans. Moscow Math. Soc. 2 (1981), 1-39. | Zbl

[5] R. I. Bogdanov, Local orbital normal forms of vector fields on the plane, Trudy Sem. Petrovsk. 5 (1979), 51-84. | MR | Zbl

[6] B. Braaksma & L. Stolovitch, Small divisors and large multipliers, Ann. Inst. Fourier (Grenoble) 57 (2007), 603-628. | Numdam | MR | Zbl

[7] A. D. Bruno, Analytical form of differential equations, Trans. Moscow Math. Soc. 25 (1971), 131-288, 26 (1972), 199-239. | Zbl

[8] C. Camacho & P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595. | MR | Zbl

[9] M. Canalis-Durand & R. Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. 13 (2004), 493-513. | Numdam | MR | Zbl

[10] H. Cartan, Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces, Hermann, 1967. | MR | Zbl

[11] D. Cerveau & R. Moussu, Groupes d’automorphismes de (𝐂,0) et équations différentielles ydy+=0, Bull. Soc. Math. France 116 (1988), 459-488. | Numdam | MR | Zbl

[12] R. Cushman & J. A. Sanders, Nilpotent normal forms and representation theory of sl (2,𝐑), in Multiparameter bifurcation theory (Arcata, Calif., 1985), Contemp. Math. 56, Amer. Math. Soc., 1986, 31-51. | MR | Zbl

[13] P. Ebenfelt & H. S. Shapiro, The mixed Cauchy problem for holomorphic partial differential operators, J. Anal. Math. 65 (1995), 237-295. | MR | Zbl

[14] J. Écalle, Sur les fonctions résurgentes, t.s I, II, III, Publ. Math. d'Orsay, 1981. | Zbl

[15] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164. | Numdam | MR | Zbl

[16] C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet & G. Iooss, A simple global characterization for normal forms of singular vector fields, Phys. D 29 (1987), 95-127. | MR | Zbl

[17] E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Math. 148 (1917), 1-78. | JFM

[18] J.-P. Françoise, Sur les formes normales de champs de vecteurs, Boll. Un. Mat. Ital. A 17 (1980), 60-66. | MR | Zbl

[19] Y. Ilyashenko & S. Yakovenko, Lectures on analytic differential equations, Graduate Studies in Math. 86, Amer. Math. Soc., 2008. | MR | Zbl

[20] G. Iooss & E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible 0 2+ iω resonance, C. R. Math. Acad. Sci. Paris 339 (2004), 831-838. | MR | Zbl

[21] G. Iooss & E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations 212 (2005), 1-61. | MR | Zbl

[22] H. Kokubu, H. Oka & D. Wang, Linear grading function and further reduction of normal forms, J. Differential Equations 132 (1996), 293-318. | MR | Zbl

[23] E. Lombardi & L. Stolovitch, Forme normale de perturbation de champs de vecteurs quasi-homogènes, C. R. Math. Acad. Sci. Paris 347 (2009), 143-146. | MR | Zbl

[24] F. Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations 158 (1999), 152-173. | MR | Zbl

[25] B. Malgrange, Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki, vol. 1981/82, exposé no 582, Astérisque 92-93 (1982), 59-73. | Numdam | MR | Zbl

[26] B. Malgrange, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), 1-4. | MR | Zbl

[27] J. Martinet & J.-P. Ramis, Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Publ. Math. I.H.É.S. 55 (1982), 63-164. | Numdam | MR | Zbl

[28] J. Martinet & J.-P. Ramis, Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. École Norm. Sup. 16 (1983), 571-621. | Numdam | MR | Zbl

[29] J. Murdock, Normal forms and unfoldings for local dynamical systems, Springer Monographs in Math., Springer, 2003. | MR | Zbl

[30] E. Paul, Formal normal forms for the perturbations of a quasi-homogeneous Hamiltonian vector field, J. Dynam. Control Systems 10 (2004), 545-575. | MR | Zbl

[31] J.-P. Ramis, Théorèmes d'indices Gevrey pour les équations différentielles ordinaires, Mem. Amer. Math. Soc. 48 (1984). | MR | Zbl

[32] H. S. Shapiro, An algebraic theorem of E. Fischer, and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), 513-537. | MR | Zbl

[33] Y. Sibuya, Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs 82, Amer. Math. Soc., 1990. | MR | Zbl

[34] L. Stolovitch, Sur les formes normales de systèmes nilpotents, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), 355-358. | MR | Zbl

[35] L. Stolovitch, Sur un théorème de Dulac, Ann. Inst. Fourier (Grenoble) 44 (1994), 1397-1433. | Numdam | MR | Zbl

[36] L. Stolovitch, Classification analytique de champs de vecteurs 1-résonnants de (𝐂 n ,0), Asymptotic Anal. 12 (1996), 91-143. | MR | Zbl

[37] L. Stolovitch, Singular complete integrability, Publ. Math. I.H.É.S. 91 (2000), 133-210. | MR | Zbl

[38] L. Stolovitch, Normal form of holomorphic dynamical systems, in Hamiltonian dynamical systems and applications, NATO Sci. Peace Secur. Ser. B Phys. Biophys., Springer, 2008, 249-284. | MR | Zbl

[39] L. Stolovitch, Progress in normal form theory, Nonlinearity 22 (2009), R77-R99. | MR | Zbl

[40] E. Stróżyna & H. Żołądek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations 179 (2002), 479-537. | MR | Zbl

[41] F. Takens, Singularities of vector fields, Publ. Math. I.H.É.S. 43 (1974), 47-100. | Numdam | MR | Zbl

[42] S. M. Voronin, Analytic classification of germs of conformal mappings (𝐂,0)(𝐂,0), Funktsional. Anal. i Prilozhen. 15 (1981), 1-17, 96. | MR | Zbl

[43] M. Yoshino & T. Gramchev, Simultaneous reduction to normal forms of commuting singular vector fields with linear parts having Jordan blocks, Ann. Inst. Fourier (Grenoble) 58 (2008), 263-297. | Numdam | MR | Zbl

Cited by Sources: