Multiple zeta values and periods of moduli spaces 𝔐 ¯ 0,n
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 3, pp. 371-489.

We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces 𝔐 0,n of Riemann spheres with n marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on 𝔐 0,n and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values. We also give a geometric interpretation of the double shuffle relations, by showing that they are two extreme cases of general product formulae for periods which arise by considering natural maps between moduli spaces.

Nous démontrons une conjecture de Goncharov et Manin qui prédit que les périodes des espaces de modules 𝔐 0,n des courbes de genre 0 avec n points marqués sont des valeurs zêta multiples. Nous introduisons une algèbre différentielle de fonctions polylogarithmes multiples sur 𝔐 0,n dans laquelle il existe des primitives. L’idée principale est d’appliquer une version de la formule de Stokes récursivement pour réduire chaque intégrale de périodes à une combinaison linéaire de valeurs zêta multiples. Nous donnons également une interprétation géométrique des double relations de mélange pour les valeurs zêta multiples. En considérant des applications naturelles entre les espaces des modules, on déduit des formules de produit générales entre leurs périodes. Les doubles relations de mélange s’obtiennent comme deux cas particuliers de cette construction.

DOI: 10.24033/asens.2099
Classification: 14G32, 11G55, 32G34
Keywords: moduli spaces, multiple zeta values, iterated integrals, polylogarithms, associators, associahedra
Mot clés : espace des modules, multizêtas, intégrales itérées, polylogarithmes, associateurs, associaèdres
@article{ASENS_2009_4_42_3_371_0,
     author = {Brown, Francis C. S.},
     title = {Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {371--489},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 42},
     number = {3},
     year = {2009},
     doi = {10.24033/asens.2099},
     mrnumber = {2543329},
     zbl = {1216.11079},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2099/}
}
TY  - JOUR
AU  - Brown, Francis C. S.
TI  - Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2009
SP  - 371
EP  - 489
VL  - 42
IS  - 3
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2099/
DO  - 10.24033/asens.2099
LA  - en
ID  - ASENS_2009_4_42_3_371_0
ER  - 
%0 Journal Article
%A Brown, Francis C. S.
%T Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 371-489
%V 42
%N 3
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/asens.2099/
%R 10.24033/asens.2099
%G en
%F ASENS_2009_4_42_3_371_0
Brown, Francis C. S. Multiple zeta values and periods of moduli spaces $\overline{\mathfrak {M}}_{0,n}$. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 3, pp. 371-489. doi : 10.24033/asens.2099. http://www.numdam.org/articles/10.24033/asens.2099/

[1] K. Aomoto, Fonctions hyperlogarithmiques et groupes de monodromie unipotents, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 149-156. | MR | Zbl

[2] K. Aomoto, Addition theorem of Abel type for hyper-logarithms, Nagoya Math. J. 88 (1982), 55-71. | MR | Zbl

[3] K. Aomoto, Special values of hyperlogarithms and linear difference schemes, Illinois J. Math. 34 (1990), 191-216. | MR | Zbl

[4] V. I. ArnolʼD, The cohomology ring of the group of dyed braids, Mat. Zametki 5 (1969), 227-231. | MR | Zbl

[5] A. A. Beilinson, A. B. Goncharov, V. V. Schechtman & A. N. Varchenko, Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of a pair of triangles in the plane, in Grothendieck Festschrift, 86, Birkhäuser, 1990, 135-171. | MR | Zbl

[6] A. Borel & J-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. | EuDML | MR | Zbl

[7] F. C. S. Brown, Polylogarithmes multiples uniformes en une variable, C. R. Math. Acad. Sci. Paris 338 (2004), 527-532. | MR | Zbl

[8] F. C. S. Brown, Single-valued hyperlogarithms and unipotent differential equations, preprint.

[9] K. T. Chen, Extension of C function algebra by integrals and Malcev completion of π 1 , Advances in Math. 23 (1977), 181-210. | MR | Zbl

[10] K. T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), 831-879. | MR | Zbl

[11] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math., Vol. 163, Springer, 1970. | Zbl

[12] P. Deligne, Théorie de Hodge. III, Publ. Math. I.H.É.S. 44 (1974), 5-77. | EuDML | Numdam | MR | Zbl

[13] P. Deligne, Le groupe fondamental de la droite projective moins trois points 1987), Math. Sci. Res. Inst. Publ. 16, Springer, 1989, 79-297. | MR | Zbl

[14] P. Deligne & A. B. Goncharov, Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. École Norm. Sup. 38 (2005), 1-56. | EuDML | Numdam | MR | Zbl

[15] S. L. Devadoss, Tessellations of moduli spaces and the mosaic operad, in Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. 239, Amer. Math. Soc., 1999, 91-114. | MR | Zbl

[16] S. L. Devadoss, Combinatorial equivalence of real moduli spaces, Notices Amer. Math. Soc. 51 (2004), 620-628. | MR | Zbl

[17] A. C. Dixon, On a certain double integral, Proc. London Math. Soc. 2 (1905), 8-15. | JFM | MR

[18] V. G. DrinfelʼD, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal (𝐐 ¯/𝐐), Leningrad Math. Journal 2 (1991), 829-860. | MR | Zbl

[19] J. Écalle, Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73-164. | EuDML | Numdam | MR | Zbl

[20] M. Falk & R. Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88. | EuDML | MR | Zbl

[21] S. Fischler, Groupes de Rhin-Viola et intégrales multiples, J. Théor. Nombres Bordeaux 15 (2003), 479-534. | EuDML | Numdam | MR | Zbl

[22] E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, in The moduli space of curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, 1995, 199-230. | MR | Zbl

[23] A. B. Goncharov, The dihedral Lie algebras and Galois symmetries of π 1 (l) ( 1 -({0,}μ N )), Duke Math. J. 110 (2001), 397-487. | MR | Zbl

[24] A. B. Goncharov, Multiple ζ-values, Galois groups, and geometry of modular varieties, in European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. 201, Birkhäuser, 2001, 361-392. | Zbl

[25] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint arXiv:math.AG/0103059.

[26] A. B. Goncharov, Periods and mixed motives, preprint arXiv:math.AG/0202154.

[27] A. B. Goncharov & Y. I. Manin, Multiple ζ-motives and moduli spaces ¯ 0,n , Compos. Math. 140 (2004), 1-14. | Zbl

[28] J. Gonzalez-Lorca, Série de Drinfel'd, monodromie et algèbres de Hecke, Thèse de doctorat, École Normale Supérieure, 1998.

[29] P. Griffiths & W. Schmid, Recent developments in Hodge theory: a discussion of techniques and results, in Discrete subgroups of Lie groups and applicatons to moduli (Internat. Colloq., Bombay, 1973), Oxford Univ. Press, 1975, 31-127. | MR | Zbl

[30] A. Grothendieck, On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.É.S. 29 (1966), 95-103. | EuDML | Numdam | MR | Zbl

[31] R. M. Hain, The geometry of the mixed Hodge structure on the fundamental group, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math. 46, Amer. Math. Soc., 1987, 247-282. | MR | Zbl

[32] R. M. Hain, Classical polylogarithms, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 3-42. | MR | Zbl

[33] R. M. Hain & R. Macpherson, Higher logarithms, Illinois J. Math. 34 (1990), 392-475. | MR | Zbl

[34] M. Hoang Ngoc, M. Petitot & J. Van Den Hoeven, Shuffle algebra and polylogarithms, in Formal Power Series and Algebraic Combinatorics 1998, Toronto.

[35] M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), 49-68. | MR | Zbl

[36] M. M. Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993), 119-142. | MR | Zbl

[37] V. G. Knizhnik & A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103. | MR | Zbl

[38] T. Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), 57-75. | EuDML | MR | Zbl

[39] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, 1973, Pure and Applied Mathematics, Vol. 54. | MR | Zbl

[40] I. Lappo-Danilevskii, Mémoires sur la théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. | Zbl

[41] A. R. Magid, Lectures on differential Galois theory, University Lecture Series 7, Amer. Math. Soc., 1994. | MR | Zbl

[42] L. Boutet De Monvel, Polylogarithmes, http://www.math.jussieu.fr/~boutet.

[43] P. Orlik & H. Terao, Arrangements of hyperplanes, Grund. Math. Wiss. 300, Springer, 1992. | MR | Zbl

[44] H. Poincaré, Sur les groupes d'équations linéaires, Acta Mathematica 4 (1884). | JFM

[45] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de l'unité, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 185-231. | EuDML | Numdam | MR | Zbl

[46] D. E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra 58 (1979), 432-454. | MR | Zbl

[47] G. Rhin & C. Viola, On a permutation group related to ζ(2), Acta Arith. 77 (1996), 23-56. | EuDML | MR | Zbl

[48] J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292. | Zbl

[49] T. Terasoma, Selberg integrals and multiple zeta values, Compositio Math. 133 (2002), 1-24. | MR | Zbl

[50] C. Voisin, Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics 77, Cambridge University Press, 2003. | MR | Zbl

[51] M. Waldschmidt, Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux 12 (2000), 581-595. | EuDML | Numdam | MR | Zbl

[52] M. Yoshida, Fuchsian differential equations, Aspects of Mathematics, E11, Friedr. Vieweg & Sohn, 1987. | MR | Zbl

[53] J. Zhao, Multiple polylogarithms: analytic continuation, monodromy, and variations of mixed Hodge structures, in Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000), Nankai Tracts Math. 5, World Sci. Publ., River Edge, NJ, 2002, 167-193. | MR | Zbl

[54] S. A. Zlobin, Integrals that can be represented as linear forms of generalized polylogarithms, Mat. Zametki [Math. Notes] 71 (2002), 782-787 [711-716]. | MR | Zbl

[55] W. Zudilin, Well-poised hypergeometric transformations of Euler-type multiple integrals, J. London Math. Soc. 70 (2004), 215-230. | MR | Zbl

Cited by Sources: