Géométrie, points entiers et courbes entières
[Geometry, integral points and integral curves]
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 2, pp. 221-239.

Let X be a projective variety over a number field K (resp. over ). Let H be the sum of “sufficiently many positive divisors” on X. We show that any set of quasi-integral points (resp. any integral curve) in X-H is not Zariski dense.

Soit X une variété projective sur un corps de nombres K (resp. sur ). Soit H la somme de « suffisamment de diviseurs positifs » sur X. On montre que tout ensemble de points quasi-entiers (resp. toute courbe entière) dans X-H est non Zariski-dense.

DOI: 10.24033/asens.2094
Classification: 14G25,  11J97,  11G35
Keywords: arithmetic geometry, height, integral points, diophantine approximation, hyperbolicity
@article{ASENS_2009_4_42_2_221_0,
     author = {Autissier, Pascal},
     title = {G\'eom\'etrie, points entiers et courbes enti\`eres},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {221--239},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {4e s{\'e}rie, 42},
     number = {2},
     year = {2009},
     doi = {10.24033/asens.2094},
     zbl = {1173.14016},
     mrnumber = {2518077},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/asens.2094/}
}
TY  - JOUR
AU  - Autissier, Pascal
TI  - Géométrie, points entiers et courbes entières
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2009
DA  - 2009///
SP  - 221
EP  - 239
VL  - 4e s{\'e}rie, 42
IS  - 2
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2094/
UR  - https://zbmath.org/?q=an%3A1173.14016
UR  - https://www.ams.org/mathscinet-getitem?mr=2518077
UR  - https://doi.org/10.24033/asens.2094
DO  - 10.24033/asens.2094
LA  - fr
ID  - ASENS_2009_4_42_2_221_0
ER  - 
%0 Journal Article
%A Autissier, Pascal
%T Géométrie, points entiers et courbes entières
%J Annales scientifiques de l'École Normale Supérieure
%D 2009
%P 221-239
%V 4e s{\'e}rie, 42
%N 2
%I Société mathématique de France
%U https://doi.org/10.24033/asens.2094
%R 10.24033/asens.2094
%G fr
%F ASENS_2009_4_42_2_221_0
Autissier, Pascal. Géométrie, points entiers et courbes entières. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 42 (2009) no. 2, pp. 221-239. doi : 10.24033/asens.2094. http://www.numdam.org/articles/10.24033/asens.2094/

[1] F. Angelini, An algebraic version of Demailly's asymptotic Morse inequalities, Proc. Amer. Math. Soc. 124 (1996), 3265-3269. | MR | Zbl

[2] P. Corvaja & U. Zannier, On a general Thue's equation, Amer. J. Math. 126 (2004), 1033-1055. | MR | Zbl

[3] P. Corvaja & U. Zannier, On integral points on surfaces, Ann. of Math. 160 (2004), 705-726. | MR | Zbl

[4] J.-P. Demailly, L 2 vanishing theorems for positive line bundles and adjunction theory, in Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math. 1646, Springer, 1996, 1-97. | MR | Zbl

[5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366. | MR | Zbl

[6] G. Faltings, Diophantine approximation on abelian varieties, Ann. of Math. 133 (1991), 549-576. | MR | Zbl

[7] W. Fulton, Intersection theory, 2e éd., Ergebnisse der Mathematik und ihrer Grenzgebiete 2, Springer, 1998. | MR | Zbl

[8] J.-P. Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics 42, Birkhäuser, 1983. | MR | Zbl

[9] S. Lang, Number theory. III, Encyclopaedia of Mathematical Sciences 60, Springer, 1991. | MR | Zbl

[10] R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 48, Springer, 2004. | MR | Zbl

[11] A. Levin, Generalizations of Siegel's and Picard's theorems, à paraître dans Annals of Math. arXiv :math.NT/0503699. | MR | Zbl

[12] H. P. Schlickewei, The 𝔭-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. (Basel) 29 (1977), 267-270. | MR | Zbl

[13] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, 1980. | MR | Zbl

[14] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Math. 1239, Springer, 1987. | MR | Zbl

[15] P. Vojta, A refinement of Schmidt's subspace theorem, Amer. J. Math. 111 (1989), 489-518. | MR | Zbl

[16] P. Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math. 126 (1996), 133-181. | MR | Zbl

[17] P. Vojta, On Cartan's theorem and Cartan's conjecture, Amer. J. Math. 119 (1997), 1-17. | MR | Zbl

[18] S. Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), 281-300. | MR | Zbl

Cited by Sources: