A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 24 (1991) no. 2, pp. 215-225.
@article{ASENS_1991_4_24_2_215_0,
     author = {Siedentop, Heinz and Weikard, Rudi},
     title = {A new phase space localization technique with application to the sum of negative eigenvalues of {Schr\"odinger} operators},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {215--225},
     publisher = {Elsevier},
     volume = {Ser. 4, 24},
     number = {2},
     year = {1991},
     doi = {10.24033/asens.1626},
     zbl = {0762.47022},
     mrnumber = {92d:81152},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.1626/}
}
TY  - JOUR
AU  - Siedentop, Heinz
AU  - Weikard, Rudi
TI  - A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1991
DA  - 1991///
SP  - 215
EP  - 225
VL  - Ser. 4, 24
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.24033/asens.1626/
UR  - https://zbmath.org/?q=an%3A0762.47022
UR  - https://www.ams.org/mathscinet-getitem?mr=92d:81152
UR  - https://doi.org/10.24033/asens.1626
DO  - 10.24033/asens.1626
LA  - en
ID  - ASENS_1991_4_24_2_215_0
ER  - 
Siedentop, Heinz; Weikard, Rudi. A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 24 (1991) no. 2, pp. 215-225. doi : 10.24033/asens.1626. http://www.numdam.org/articles/10.24033/asens.1626/

[1] V. Bach, A Proof of Scott's Conjecture for Ions. [Rep. Math. Phys., (to appear).].

[2] F. A. Berezin, Wick and Anti-Wick Operator Symbols. (Math. U.S.S.R. Sbornik, Vol. 15, 1971, pp. 578-610). | MR 45 #929 | Zbl 0247.47018

[3] W. Hughes, An Atomic Energy Lower Bound that Gives Scott's Correction. (Ph. D. thesis, Princeton, Department of Mathematics, 1986).

[4] W. Hughes, An Atomic Lower Bound that Agrees with Scott's Correction. (Advances in Mathematics, 1990, pp. 213-270). | MR 91c:81180 | Zbl 0715.46046

[5] E. H. Lieb, Thomas-Fermi and Related Theories of Atoms and Molecules (Rev. Mod. Phys., 53, 1981, pp. 603-604). | MR 83a:81080a | Zbl 1049.81679

[6] E. H. Lieb and B. Simon, The Thomas-Fermi Theory of Atoms, Molecules and Solids. (Adv. Math., Vol. 23, 1977, pp. 22-116). | MR 55 #1964 | Zbl 0938.81568

[7] E. H. Lieb and W. E. Thirring, Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their Relation to Sobolev Inequalities, in E. H. LIEB, B. SIMON and A. S. WIGHTMAN Ed., Studies in Mathematical Physics : Essays in Honor of Valentine Bargmann, Princeton University Press, Princeton, 1976. | Zbl 0342.35044

[8] H. Siedentop and R. Weikard, On Some Basic Properties of Density Functionals for Angular Momentum Channels. (Rep. Math. Phys., Vol. 28, 1986, pp. 193-218). | MR 90a:81196 | Zbl 0644.46059

[9] H. Siedentop and R. Weikard, On the Leading Correction of the Thomas-Fermi Model : Lower Bound - with an Appendix by A. M. K. Müller. (Invent. Math., 97, 1989, pp. 159-193). | MR 90k:81285 | Zbl 0689.34011

[10] H. Siedentop and R. Weikard, On the Leading Energy Correction for the Statistical Model of the Atom : Interacting Case. (Commun. Math. Phys., Vol. 112, 1987, pp. 471-490). | MR 89a:81022 | Zbl 0920.35120

Cité par Sources :