@article{ASENS_1989_4_22_1_137_0, author = {Guillop\'e, Laurent}, title = {Th\'eorie spectrale de quelques vari\'et\'es \`a bouts}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {137--160}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 22}, number = {1}, year = {1989}, doi = {10.24033/asens.1580}, mrnumber = {90g:58136}, zbl = {0682.58049}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.1580/} }
TY - JOUR AU - Guillopé, Laurent TI - Théorie spectrale de quelques variétés à bouts JO - Annales scientifiques de l'École Normale Supérieure PY - 1989 SP - 137 EP - 160 VL - 22 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1580/ DO - 10.24033/asens.1580 LA - fr ID - ASENS_1989_4_22_1_137_0 ER -
Guillopé, Laurent. Théorie spectrale de quelques variétés à bouts. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 22 (1989) no. 1, pp. 137-160. doi : 10.24033/asens.1580. http://www.numdam.org/articles/10.24033/asens.1580/
[1] Perturbation Theory for Shape Resonances and Large Barrier Potentials (Comment. Phys. Math., vol. 83, 1982, p. 151-170). | MR | Zbl
et ,[2] L2-Index and the Selberg Trace Formula (J. Funct. Anal., vol. 53, 1983, p. 151-201). | MR | Zbl
et ,[3] Mathematical Scattering Theory, Akademie-Verlag, Berlin, 1983.
et ,[4] Pseudo-Laplaciens II (Ann. Inst. Fourier, Grenoble, vol. 32, 1983, p. 87-113). | Numdam | MR | Zbl
,[5] Eigenvalues Estimates for Certain Non-Compact Manifolds (Michigan Math. J., vol. 31, 1984, p. 349-357). | MR | Zbl
,[6] Automorphic Forms on Semi-Simple Lie Groups (Lecture Notes in Math., n° 62, Berlin, Heidelberg, New York, Springer-Verlag, 1968). | MR | Zbl
,[7] Signature Defects of Cusps of Hilbert Modular Varieties and Values of L-Series at s = 1 (J. Differential Geom., vol. 20, 1984, p. 55-119). | MR | Zbl
,[8] Manifolds with Cusps of Rank One (Lecture Notes in Math., n° 1244, Berlin, Heidelberg, New York, Springer-Verlag, 1987). | MR | Zbl
,[9] Mellin Transformations and Scattering Theory I. Short Range Potentials (Duke Math. J., vol. 47, 1980, p. 187-193). | MR | Zbl
,Cited by Sources: