We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary gaussian process multiplied by a weight function function where and is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii, IMS Lecture Notes Monograph Series 36 (2001) 419-433].
Classification : 62G05, 65R30, 65R32
Mots clés : deconvolution, minimax estimation, Bayes estimation, Wiener filtration
@article{PS_2008__12__327_0, author = {Ermakov, Mikhail}, title = {Minimax and {Bayes} estimation in deconvolution problem}, journal = {ESAIM: Probability and Statistics}, pages = {327--344}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007038}, mrnumber = {2404034}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007038/} }
TY - JOUR AU - Ermakov, Mikhail TI - Minimax and Bayes estimation in deconvolution problem JO - ESAIM: Probability and Statistics PY - 2008 DA - 2008/// SP - 327 EP - 344 VL - 12 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007038/ UR - https://www.ams.org/mathscinet-getitem?mr=2404034 UR - https://doi.org/10.1051/ps:2007038 DO - 10.1051/ps:2007038 LA - en ID - PS_2008__12__327_0 ER -
Ermakov, Mikhail. Minimax and Bayes estimation in deconvolution problem. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 327-344. doi : 10.1051/ps:2007038. http://www.numdam.org/articles/10.1051/ps:2007038/
[1] Asymptotic equivalence theory for nonparametric regression with random design. Ann. Stat. 24 (2002) 2399-2430. | Zbl 1029.62044
, , and ,[2] Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32 (2004) 181-192. | MR 2064400 | Zbl 1056.62047
,[3] Sharp optimality for density deconvolution with dominating bias. (2004), arXiv:math.ST/0409471. | Zbl 1141.62021
and ,[4] Block thresholding and sharp adaptive estimation in severely ill-posed problems. Theory Probab. Appl. 48 (2003) 534-556. | Zbl 1130.62313
, , and ,[5] Statistical approach to Cauchy problem for Laplace equation. State of the Art in Probability and Statistics, Festschrift for W.R. van, Zwet M. de Gunst, C. Klaassen and van der Vaart Eds., IMS Lecture Notes Monograph Series 36 (2001) 419-433. | MR 1836549
and ,[6] Optimal rates of convergence for deconvolving a density J. Amer. Statist. Assoc. 83 (1988) 1184-1186. | MR 997599 | Zbl 0673.62033
and ,[7] Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 (1992) 101-126. | MR 1325535 | Zbl 0826.65117
,[8] Nonparametric Curve Estimation: Methods, Theory and Applications. New York, Springer (1999). | MR 1705298 | Zbl 0935.62039
,[9] Sharp optimal and adaptive estimation for heteroscedastic nonparametric regression. Statistica Cinica 6 (1996) 925-942. | MR 1422411 | Zbl 0857.62037
and ,[10] Minimax estimation in a deconvolution problem. J. Phys. A: Math. Gen. 25 (1992) 1273-1282. | MR 1154868 | Zbl 0765.62080
,[11] Asymptotically minimax and Bayes estimation in a deconvolution problem. Inverse Problems 19 (2003) 1339-1359. | MR 2036534 | Zbl 1040.62002
,[12] Asymptotic normality for deconvolution kernel estimators. Sankhia Ser. A 53 (1991) 97-110. | MR 1177770 | Zbl 0729.62034
,[13] On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257-1272. | MR 1126324 | Zbl 0729.62033
,[14] On pointwise adaptive nonparametric deconvolution. Bernoulli 5 (1999) 907-25. | MR 1715444 | Zbl 0953.62033
,[15] Asymptotically efficient estimation of Analitic functions in Gaussian noise. Bernoulli 2 (1996) 167-181. | MR 1410136 | Zbl 0860.62034
, and ,[16] Estimation of distribution density belonging to a class of entire functions. Theory Probab. Appl. 27 (1982) 551-562. | Zbl 0516.62043
and ,[17] Deconvolution, with application to Spectroscopy. New York, Academic (1984).
,[18] Wavelet deconvolution in a periodic setting. J. Roy. Stat. Soc. Ser B. 66 (2004) 547-573. | MR 2088290 | Zbl 1046.62039
, , and ,[19] Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist. 32 (2004) 1781-1805. | MR 2102493 | Zbl 1056.62044
and ,[20] Threshholding estimators for linear inverse problems and deconvolutions. Ann. Stat. 31 (2003) 58-109. | MR 1962500 | Zbl 1102.62318
and ,[21] Robust techniques for signal processing. A survey. Proc. IEEE 73 (1985) 433-481. | Zbl 0569.62084
and ,[22] Extremes and Related Properties of Random sequences and Processes. Springer-Verlag NY (1986). | MR 691492 | Zbl 0518.60021
, and ,[23] ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52 (2004) 418-433. | MR 2044455
, , ,[24] Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Stat. 24 (1996) 2399-2430. | MR 1425959 | Zbl 0867.62035
,[25] Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 (1999) 2033-2053. | MR 1765627 | Zbl 0962.62030
and ,[26] Optimal filtration of square-integral signal in Gaussian noise. Problems Inform. Transm. 16 (1980) 52-68. | MR 624591 | Zbl 0452.94003
,[27] Optimal rates and constants in -minimax estimation of probability density functions. Math. Methods Stat. 5 (1996) 253-274. | MR 1417672 | Zbl 0872.62043
,[28] The connection between regularization operators and support vector kernels. Newral Networks 11 (1998) 637-649.
, and ,[29] Solution of Ill-Posed Problems. New-York, Wiley (1977). | MR 455365 | Zbl 0354.65028
and ,[30] On the best rate of adaptive estimation in some inverse problems. C.R. Acad. Sci. Paris, Serie 1 330 (2000) 835-840. | MR 1769957
,[31] Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York, Wiley (1950).
,Cité par Sources :