Minimax and Bayes estimation in deconvolution problem
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 327-344.

We consider a deconvolution problem of estimating a signal blurred with a random noise. The noise is assumed to be a stationary gaussian process multiplied by a weight function function ϵh where hL 2 (R 1 ) and ϵ is a small parameter. The underlying solution is assumed to be infinitely differentiable. For this model we find asymptotically minimax and Bayes estimators. In the case of solutions having finite number of derivatives similar results were obtained in [G.K. Golubev and R.Z. Khasminskii, IMS Lecture Notes Monograph Series 36 (2001) 419-433].

DOI : https://doi.org/10.1051/ps:2007038
Classification : 62G05,  65R30,  65R32
Mots clés : deconvolution, minimax estimation, Bayes estimation, Wiener filtration
@article{PS_2008__12__327_0,
     author = {Ermakov, Mikhail},
     title = {Minimax and {Bayes} estimation in deconvolution problem},
     journal = {ESAIM: Probability and Statistics},
     pages = {327--344},
     publisher = {EDP-Sciences},
     volume = {12},
     year = {2008},
     doi = {10.1051/ps:2007038},
     mrnumber = {2404034},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2007038/}
}
TY  - JOUR
AU  - Ermakov, Mikhail
TI  - Minimax and Bayes estimation in deconvolution problem
JO  - ESAIM: Probability and Statistics
PY  - 2008
DA  - 2008///
SP  - 327
EP  - 344
VL  - 12
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2007038/
UR  - https://www.ams.org/mathscinet-getitem?mr=2404034
UR  - https://doi.org/10.1051/ps:2007038
DO  - 10.1051/ps:2007038
LA  - en
ID  - PS_2008__12__327_0
ER  - 
Ermakov, Mikhail. Minimax and Bayes estimation in deconvolution problem. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 327-344. doi : 10.1051/ps:2007038. http://www.numdam.org/articles/10.1051/ps:2007038/

[1] L.D. Brown, T. Cai, M.G. Low and C. Zang, Asymptotic equivalence theory for nonparametric regression with random design. Ann. Stat. 24 (2002) 2399-2430. | Zbl 1029.62044

[2] C. Butucea, Deconvolution of supersmooth densities with smooth noise. Canad. J. Statist. 32 (2004) 181-192. | MR 2064400 | Zbl 1056.62047

[3] C. Butucea and A.B. Tsybakov, Sharp optimality for density deconvolution with dominating bias. (2004), arXiv:math.ST/0409471. | Zbl 1141.62021

[4] L. Cavalier, G.K. Golubev, O.V. Lepski and A.B. Tsybakov, Block thresholding and sharp adaptive estimation in severely ill-posed problems. Theory Probab. Appl. 48 (2003) 534-556. | Zbl 1130.62313

[5] G.K. Golubev and R.Z. Khasminskii, Statistical approach to Cauchy problem for Laplace equation. State of the Art in Probability and Statistics, Festschrift for W.R. van, Zwet M. de Gunst, C. Klaassen and van der Vaart Eds., IMS Lecture Notes Monograph Series 36 (2001) 419-433. | MR 1836549

[6] R.J. Carrol and P. Hall, Optimal rates of convergence for deconvolving a density J. Amer. Statist. Assoc. 83 (1988) 1184-1186. | MR 997599 | Zbl 0673.62033

[7] D.L. Donoho, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 (1992) 101-126. | MR 1325535 | Zbl 0826.65117

[8] S. Efroimovich, Nonparametric Curve Estimation: Methods, Theory and Applications. New York, Springer (1999). | MR 1705298 | Zbl 0935.62039

[9] S. Efromovich and M. Pinsker, Sharp optimal and adaptive estimation for heteroscedastic nonparametric regression. Statistica Cinica 6 (1996) 925-942. | MR 1422411 | Zbl 0857.62037

[10] M.S. Ermakov, Minimax estimation in a deconvolution problem. J. Phys. A: Math. Gen. 25 (1992) 1273-1282. | MR 1154868 | Zbl 0765.62080

[11] M.S. Ermakov, Asymptotically minimax and Bayes estimation in a deconvolution problem. Inverse Problems 19 (2003) 1339-1359. | MR 2036534 | Zbl 1040.62002

[12] J. Fan, Asymptotic normality for deconvolution kernel estimators. Sankhia Ser. A 53 (1991) 97-110. | MR 1177770 | Zbl 0729.62034

[13] J. Fan, On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257-1272. | MR 1126324 | Zbl 0729.62033

[14] A. Goldenshluger, On pointwise adaptive nonparametric deconvolution. Bernoulli 5 (1999) 907-25. | MR 1715444 | Zbl 0953.62033

[15] Yu K. Golubev, B.Y. Levit and A.B. Tsybakov, Asymptotically efficient estimation of Analitic functions in Gaussian noise. Bernoulli 2 (1996) 167-181. | MR 1410136 | Zbl 0860.62034

[16] I.A. Ibragimov and R.Z. Hasminskii, Estimation of distribution density belonging to a class of entire functions. Theory Probab. Appl. 27 (1982) 551-562. | Zbl 0516.62043

[17] P.A. Jansson, Deconvolution, with application to Spectroscopy. New York, Academic (1984).

[18] I.M. Johnstone, G. Kerkyacharian, D. Picard and M. Raimondo, Wavelet deconvolution in a periodic setting. J. Roy. Stat. Soc. Ser B. 66 (2004) 547-573. | MR 2088290 | Zbl 1046.62039

[19] I.M. Johnstone and M. Raimondo, Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist. 32 (2004) 1781-1805. | MR 2102493 | Zbl 1056.62044

[20] J. Kalifa and S. Mallat, Threshholding estimators for linear inverse problems and deconvolutions. Ann. Stat. 31 (2003) 58-109. | MR 1962500 | Zbl 1102.62318

[21] S. Kassam and H. Poor, Robust techniques for signal processing. A survey. Proc. IEEE 73 (1985) 433-481. | Zbl 0569.62084

[22] M.R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random sequences and Processes. Springer-Verlag NY (1986). | MR 691492 | Zbl 0518.60021

[23] R. Neelamani, H. Choi, R.G. Baraniuk, ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52 (2004) 418-433. | MR 2044455

[24] M. Nussbaum, Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Stat. 24 (1996) 2399-2430. | MR 1425959 | Zbl 0867.62035

[25] M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist. 27 (1999) 2033-2053. | MR 1765627 | Zbl 0962.62030

[26] M.S. Pinsker, Optimal filtration of square-integral signal in Gaussian noise. Problems Inform. Transm. 16 (1980) 52-68. | MR 624591 | Zbl 0452.94003

[27] M. Schipper, Optimal rates and constants in L 2 -minimax estimation of probability density functions. Math. Methods Stat. 5 (1996) 253-274. | MR 1417672 | Zbl 0872.62043

[28] A.J. Smola, B. Scholkopf and K. Miller, The connection between regularization operators and support vector kernels. Newral Networks 11 (1998) 637-649.

[29] A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems. New-York, Wiley (1977). | MR 455365 | Zbl 0354.65028

[30] A.B. Tsybakov, On the best rate of adaptive estimation in some inverse problems. C.R. Acad. Sci. Paris, Serie 1 330 (2000) 835-840. | MR 1769957

[31] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York, Wiley (1950).

Cité par Sources :