On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 258-268.

For a sequence of blockwise m-dependent random variables {X n ,n1}, conditions are provided under which lim n ( i=1 n X i )/b n =0 almost surely where {b n ,n1} is a sequence of positive constants. The results are new even when b n n r ,r>0. As special case, the Brunk-Chung strong law of large numbers is obtained for sequences of independent random variables. The current work also extends results of Móricz [Proc. Amer. Math. Soc. 101 (1987) 709-715], and Gaposhkin [Teor. Veroyatnost. i Primenen. 39 (1994) 804-812]. The sharpness of the results is illustrated by examples.

DOI : https://doi.org/10.1051/ps:2006010
Classification : 60F15
Mots clés : strong law of large numbers, almost sure convergence, blockwise m-dependent random variables
@article{PS_2006__10__258_0,
     author = {Thanh, Le Van},
     title = {On the {Brunk-Chung} type strong law of large numbers for sequences of blockwise $m$-dependent random variables},
     journal = {ESAIM: Probability and Statistics},
     pages = {258--268},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006010},
     mrnumber = {2219343},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2006010/}
}
TY  - JOUR
AU  - Thanh, Le Van
TI  - On the Brunk-Chung type strong law of large numbers for sequences of blockwise $m$-dependent random variables
JO  - ESAIM: Probability and Statistics
PY  - 2006
DA  - 2006///
SP  - 258
EP  - 268
VL  - 10
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2006010/
UR  - https://www.ams.org/mathscinet-getitem?mr=2219343
UR  - https://doi.org/10.1051/ps:2006010
DO  - 10.1051/ps:2006010
LA  - en
ID  - PS_2006__10__258_0
ER  - 
Thanh, Le Van. On the Brunk-Chung type strong law of large numbers for sequences of blockwise $m$-dependent random variables. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 258-268. doi : 10.1051/ps:2006010. http://www.numdam.org/articles/10.1051/ps:2006010/

[1] S. Chobanyan, S. Levental and V. Mandrekar, Prokhorov blocks and strong law of large numbers under rearrangements. J. Theoret. Probab. 17 (2004) 647-672. | Zbl 1062.60028

[2] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales. 3rd ed. Springer-Verlag, New York (1997). | MR 1476912 | Zbl 0891.60002

[3] V.F. Gaposhkin, On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables. Teor. Veroyatnost. i Primenen. 39 (1994) 804-812 (in Russian). English translation in Theory Probab. Appl. 39 (1994) 667-684 (1995). | Zbl 0847.60022

[4] M. Loève, Probability Theory I. 4th ed. Springer-Verlag, New York (1977). | MR 651017 | Zbl 0359.60001

[5] F. Móricz, Strong limit theorems for blockwise m-dependent and blockwise quasiorthogonal sequences of random variables. Proc. Amer. Math. Soc. 101 (1987) 709-715. | Zbl 0632.60025

Cité par Sources :