A scale-space approach with wavelets to singularity estimation
ESAIM: Probability and Statistics, Tome 9 (2005), pp. 143-164.

This paper is concerned with the problem of determining the typical features of a curve when it is observed with noise. It has been shown that one can characterize the Lipschitz singularities of a signal by following the propagation across scales of the modulus maxima of its continuous wavelet transform. A nonparametric approach, based on appropriate thresholding of the empirical wavelet coefficients, is proposed to estimate the wavelet maxima of a signal observed with noise at various scales. In order to identify the singularities of the unknown signal, we introduce a new tool, “the structural intensity”, that computes the “density” of the location of the modulus maxima of a wavelet representation along various scales. This approach is shown to be an effective technique for detecting the significant singularities of a signal corrupted by noise and for removing spurious estimates. The asymptotic properties of the resulting estimators are studied and illustrated by simulations. An application to a real data set is also proposed.

DOI : https://doi.org/10.1051/ps:2005007
Classification : 62G05,  62G08,  65Dxx
Mots clés : Lipschitz singularity, continuous wavelet transform, scale-space representation, zero-crossings, wavelet maxima, feature extraction, non parametric estimation, bagging, landmark-based matching
@article{PS_2005__9__143_0,
     author = {Bigot, J\'er\'emie},
     title = {A scale-space approach with wavelets to singularity estimation},
     journal = {ESAIM: Probability and Statistics},
     pages = {143--164},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2005},
     doi = {10.1051/ps:2005007},
     zbl = {1136.62030},
     mrnumber = {2148964},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2005007/}
}
TY  - JOUR
AU  - Bigot, Jérémie
TI  - A scale-space approach with wavelets to singularity estimation
JO  - ESAIM: Probability and Statistics
PY  - 2005
DA  - 2005///
SP  - 143
EP  - 164
VL  - 9
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2005007/
UR  - https://zbmath.org/?q=an%3A1136.62030
UR  - https://www.ams.org/mathscinet-getitem?mr=2148964
UR  - https://doi.org/10.1051/ps:2005007
DO  - 10.1051/ps:2005007
LA  - en
ID  - PS_2005__9__143_0
ER  - 
Bigot, Jérémie. A scale-space approach with wavelets to singularity estimation. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 143-164. doi : 10.1051/ps:2005007. http://www.numdam.org/articles/10.1051/ps:2005007/

[1] A. Antoniadis, J. Bigot and T. Sapatinas, Wavelet estimators in nonparametric regression: a comparative simulation study. J. Statist. Software 6 (2001) 1-83.

[2] A. Antoniadis and I. Gijbels, Detecting abrupt changes by wavelet methods. J. Nonparam. Statist 14 (2001) 7-29. | Zbl 1017.62033

[3] A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities and fractal functions, in Spline functions and the theory of wavelets (Montreal, PQ, 1996), Amer. Math. Soc., Providence, RI. CRM Proc. Lect. Notes 18 (1999) 315-329.. | Zbl 1003.28007

[4] A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4 (1998) 159-174. | Zbl 0914.28005

[5] A. Arneodo, E. Bacry, S. Jaffard and J.F. Muzy, Oscillating singularities on Cantor sets: a grand-canonical multifractal formalism. J. Statist. Phys. 87 (1997) 179-209. | Zbl 0917.28007

[6] A. Arneodo, E. Bacry and J.F. Muzy, The thermodynamics of fractals revisited with wavelets. Physica A 213 (1995) 232-275.

[7] E. Bacry, J.F. Muzy and A. Arneodo, Singularity spectrum of fractal signals: exact results. J. Statist. Phys. 70 (1993) 635-674. | Zbl 0943.37500

[8] J. Bigot, Automatic landmark registration of 1D curves, in Recent advances and trends in nonparametric statistics, M. Akritas and D.N. Politis Eds., Elsevier (2003) 479-496.

[9] J. Bigot, Landmark-based registration of 1D curves and functional analysis of variance with wavelets. Technical Report TR0333, IAP (Interuniversity Attraction Pole network) (2003).

[10] L. Breiman, Bagging Predictors. Machine Learning 24 (1996) 123-140. | Zbl 0858.68080

[11] L.D. Brown and M.G. Lo, Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 3 (1996) 2384-2398. | MR 1425958 | Zbl 0867.62022

[12] P. Chaudhuri and J.S. Marron, SiZer for exploration of structures in curves. J. Am. Statist. Ass. 94 (1999) 807-823. | MR 1723347 | Zbl 1072.62556

[13] P. Chaudhuri and J.S. Marron Scale space view of curve estimation. Ann. Statist. 28 (2000) 408-428. | MR 1790003 | Zbl 1106.62318

[14] R.R. Coifman and D.L. Donoho, Translation-invariant de-noising, in Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds., New York: Springer-Verlag. Lect. Notes Statist. 103 (1995) 125-150. | MR 1364669 | Zbl 0866.94008

[15] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, SIAM (1992). | MR 1162107 | Zbl 0776.42018

[16] D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455. | Zbl 0815.62019

[17] D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass. 90 (1995) 1200-1224. | MR 1379464 | Zbl 0869.62024

[18] D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Ann. Statist. 26 (1998) 879-921. | MR 1635414 | Zbl 0935.62041

[19] D.L. Donoho and I.M. Johnstone, Asymptotic minimality of wavelet estimators with sampled data. Stat. Sinica 9 (1999) 1-32. | MR 1678879 | Zbl 1065.62518

[20] D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptotia? (with discussion). J. R. Statist. Soc. B 57 (1995) 301-337. | MR 1323344 | Zbl 0827.62035

[21] N.I. Fisher and J.S. Marron, Mode testing via the excess mass estimate. Biometrika 88 (2001) 499-517. | MR 1844848 | Zbl 0985.62034

[22] T. Gasser and A. Kneip, Searching for Structure in Curve Samples. J. Am. Statist. Ass. 90 (1995) 1179-1188. | Zbl 0864.62019

[23] B. Hummel and R. Moniot, Reconstruction from zero-crossings in scale-space. IEEE Trans. Acoust., Speech, and Signal Proc. 37 (1989) 2111-2130.

[24] S. Jaffard, Mathematical Tools for Multifractal Signal Processing. Signal Processing for Multimedia, J.S Byrnes Ed., IOS Press (1999) 111-128. | Zbl 0991.94012

[25] A. Kneip and T. Gasser, Statistical tools to analyze data representing a sample of curves. Ann. Statist. 20 (1992) 1266-1305. | MR 1186250 | Zbl 0785.62042

[26] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag (1983). | MR 691492 | Zbl 0518.60021

[27] T. Lindeberg, Scale Space Theory in Computer Vision. Kluwer, Boston (1994). | Zbl 0812.68040

[28] S. Mallat, Zero-Crossings of a Wavelet Transform. IEEE Trans. Inform. Theory 37 (1991) 1019-1033. | MR 1111805

[29] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press (1998). | MR 1614527 | Zbl 0937.94001

[30] S. Mallat and W.L. Hwang, Singularity Detection and Processing with Wavelets. IEEE Trans. Inform. Theory 38 (1992) 617-643. | MR 1162218 | Zbl 0745.93073

[31] S. Mallat and S. Zhong, Characterization of Signals From Multiscale Egde. IEEE Trans. Pattern Anal. Machine Intelligence 14 (1992) 710-732.

[32] S. Mallat and S. Zhong, Wavelet Transformation Maxima and Multiscale Edges, in Wavelets: A Tutorial in Theory and Applications, C.K. Chui Ed. Boston, Academic Press (1992) 66-104. | MR 1187338 | Zbl 0804.68158

[33] S. Mallat and S. Zhong, Wavelet Maxima Representation, in Wavelets and Applications, Y. Meyer Ed. New York, Springer-Verlag (1992) 207-284. | MR 1276526 | Zbl 0804.68157

[34] M.C. Minnotte and D.W. Scott, The mode tree: a tool for visualization of nonparametric density features. J. Computat. Graph. Statist. 2 (1993) 51-68.

[35] M.C. Minnotte, D.J. Marchette and E.J. Wegman, The bumpy road to the mode forest. J. Comput. Graph. Statist. 7 (1998) 239-251.

[36] M. Misiti, Y. Misiti, G. Oppenheim and J.-M. Poggi, Décomposition en ondelettes et méthodes comparatives : étude d'une courbe de charge éléctrique. Revue de Statistique Appliquée 17 (1994) 57-77. | EuDML 106352 | Numdam

[37] J.F. Muzy, E. Bacry and A. Arneodo, The multifractal formalism revisited with wavelets. Int. J. Bif. Chaos 4 (1994) 245-302. | MR 1287531 | Zbl 0807.58032

[38] D. Picard and K. Tribouley, Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 (2000) 298-335. | Zbl 1106.62331

[39] M. Raimondo, Minimax estimation of sharp change points. Ann. Statist. 26 (1998) 1379-1397. | MR 1647673 | Zbl 0929.62039

[40] J.O. Ramsay and X. Li, Curve registration. J. R. Statist. Soc. B 60 (1998) 351-363. | MR 1616045 | Zbl 0909.62033

[41] J.O. Ramsay and B.W. Silverman, Functional data analysis. New York, Springer Verlag (1997). | MR 2168993 | Zbl 0882.62002

[42] Y. Raviv and N. Intrator, Bootstrapping with Noise: An Effective Regularization Technique. Connection Science, Special issue on Combining Estimator 8 (1996) 356-372.

[43] M. Unser, A. Aldroubi and M. Eden, On the Asymptotic Convergence of B-Spline Wavelets to Gabor Functions. IEEE Trans. Inform. Theory 38 (1992) 864-872. | MR 1162223 | Zbl 0757.41022

[44] Y. Wang, Jump and Sharp Cusp Detection by Wavelets. Biometrica 82 (1995) 385-397. | MR 1354236 | Zbl 0824.62031

[45] K. Wang and T. Gasser, Alignment of curves by dynamic time warping. Ann. Statist. 25 (1997) 1251-1276. | MR 1447750 | Zbl 0898.62051

[46] K. Wang and T. Gasser, Synchronizing sample curves nonparametrically. Ann. Statist. 27 (1999) 439-460. | MR 1714722 | Zbl 0942.62043

[47] Y.P. Wang and S.L. Lee, Scale-Space Derived From B-Splines. IEEE Trans. on Pattern Analysis and Machine Intelligence 20 (1998) 1040-1055.

[48] L. Younes, Deformations, Warping and Object Comparison. Tutorial (2000) http://www.cmla.ens-cachan.fr/ ˜younes.

[49] A.L. Yuille and T.A. Poggio, Scaling Theorems for Zero Crossings. IEEE Trans. Pattern Anal. Machine Intelligence 8 (1986) 15-25. | Zbl 0575.94001

Cité par Sources :