We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl. 74 (1995) 483-548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a class of numerical approximations for this system.
Keywords: Euler equations, conservation law, shock wave, nozzle flow, source term, entropy solution
@article{M2AN_2008__42_3_425_0, author = {Kr\"oner, Dietmar and Lefloch, Philippe G. and Thanh, Mai-Duc}, title = {The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {425--442}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/m2an:2008011}, mrnumber = {2423793}, zbl = {1139.76048}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2008011/} }
TY - JOUR AU - Kröner, Dietmar AU - Lefloch, Philippe G. AU - Thanh, Mai-Duc TI - The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 425 EP - 442 VL - 42 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2008011/ DO - 10.1051/m2an:2008011 LA - en ID - M2AN_2008__42_3_425_0 ER -
%0 Journal Article %A Kröner, Dietmar %A Lefloch, Philippe G. %A Thanh, Mai-Duc %T The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 425-442 %V 42 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2008011/ %R 10.1051/m2an:2008011 %G en %F M2AN_2008__42_3_425_0
Kröner, Dietmar; Lefloch, Philippe G.; Thanh, Mai-Duc. The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. ESAIM: Modélisation mathématique et analyse numérique, Volume 42 (2008) no. 3, pp. 425-442. doi : 10.1051/m2an:2008011. http://www.numdam.org/articles/10.1051/m2an:2008011/
[1] On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64 (2004) 878-901. | MR | Zbl
and ,[2] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comp. 25 (2004) 2050-2065. | MR | Zbl
, , , and ,[3] Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws. J. Comput. Phys. 187 (2003) 391-427. | MR | Zbl
and ,[4] Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72 (2003) 131-157. | MR | Zbl
, and ,[5] Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004). | MR | Zbl
,[6] Supersonic Flow and Shock Waves. John Wiley, New York (1948). | MR | Zbl
and ,[7] Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548. | MR | Zbl
, and ,[8] The Riemann problem for a class of resonant nonlinear systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR | Zbl
and ,[9] A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comp. Math. Appl. 39 (2000) 135-159. | MR | Zbl
,[10] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | MR | Zbl
and ,[11] Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35 2117-2127 (1998). | MR | Zbl
, , and ,[12] Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR | Zbl
and ,[13] Convergence of the Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640. | MR | Zbl
and ,[14] On the Model of Compressible Flows in a Nozzle: Mathematical Analysis and Numerical Methods, in Proc. 10th Intern. Conf. “Hyperbolic Problem: Theory, Numerics, and Applications”, Osaka (2004), Yokohama Publishers (2006) 117-124. | Zbl
and ,[15] Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43 (2006) 796-824. | MR | Zbl
and ,[16] Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form. Comm. Partial. Diff. Eq. 13 (1988) 669-727. | MR | Zbl
,[17] Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, Institute Math. Appl., Minneapolis (1989).
,[18] Hyperbolic systems of conservation laws: The theory of classical and non-classical shock waves, Lectures in Mathematics. ETH Zürich, Birkäuser (2002). | MR | Zbl
,[19] Graph solutions of nonlinear hyperbolic systems. J. Hyper. Diff. Equ. 1 (2004) 243-289. | MR | Zbl
,[20] Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5 (1993) 261-280. | MR | Zbl
and ,[21] The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci. 1 (2003) 763-797. | MR | Zbl
and ,[22] The Riemann problem for the shallow water equations with discontinuous topography. Comm. Math. Sci. 5 (2007) 865-885. | MR | Zbl
and ,[23] A Riemann problem in gas dynamics with bifurcation. Hyperbolic partial differential equations III. Comput. Math. Appl. (Part A) 12 (1986) 433-455. | MR | Zbl
and ,[24] Skew selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103 (1984) 428-442. | MR | Zbl
,[25] A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2 (1986) 211-219. | MR | Zbl
,Cited by Sources: