Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in and , respectively, of the scheme are established. Under certain hypotheses on the data, we also derive convergence without any convergence rate. The validity of theoretical results is confirmed by numerical examples.
Keywords: finite element method, degenerate parabolic equation, nonlinear semigroup
@article{M2AN_2005__39_4_755_0, author = {Mizutani, Akira and Saito, Norikazu and Suzuki, Takashi}, title = {Finite element approximation for degenerate parabolic equations. {An} application of nonlinear semigroup theory}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {755--780}, publisher = {EDP-Sciences}, volume = {39}, number = {4}, year = {2005}, doi = {10.1051/m2an:2005033}, mrnumber = {2165678}, zbl = {1078.35009}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005033/} }
TY - JOUR AU - Mizutani, Akira AU - Saito, Norikazu AU - Suzuki, Takashi TI - Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 755 EP - 780 VL - 39 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005033/ DO - 10.1051/m2an:2005033 LA - en ID - M2AN_2005__39_4_755_0 ER -
%0 Journal Article %A Mizutani, Akira %A Saito, Norikazu %A Suzuki, Takashi %T Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 755-780 %V 39 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005033/ %R 10.1051/m2an:2005033 %G en %F M2AN_2005__39_4_755_0
Mizutani, Akira; Saito, Norikazu; Suzuki, Takashi. Finite element approximation for degenerate parabolic equations. An application of nonlinear semigroup theory. ESAIM: Modélisation mathématique et analyse numérique, Volume 39 (2005) no. 4, pp. 755-780. doi : 10.1051/m2an:2005033. http://www.numdam.org/articles/10.1051/m2an:2005033/
[1] Sobolev Spaces. Academic Press, New York, London (1975). | MR | Zbl
,[2] Some existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions. Appl. Math. Optim. 17 (1988) 203-224. | Zbl
, and ,[3] A numerical method for solving the problem . RAIRO Anal. Numer. 13 (1979) 297-312. | Numdam | Zbl
, and ,[4] The Mathematical Theory of Finite Element Methods. Springer (1994). | MR | Zbl
and ,[5] Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9 (1972) 63-74. | Zbl
and ,[6] Semi-linear second-order elliptic equations in . J. Math. Soc. Japan 25 (1973) 565-590. | Zbl
and ,[7] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR | Zbl
,[8] Basic Error Estimates for Elliptic Problems, in Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Handbook of Numerical Analysis, 17-351, Elsevier Science Publishers B.V., Amsterdam (1991). | Zbl
,[9] Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2 (1973) 17-31. | Zbl
and ,[10] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl
,[11] Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differential Equations 151 (1999) 231-251. | Zbl
and ,[12] Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265-293. | Zbl
and ,[13] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl
,[14] Weak and Variational Methods for Moving Boundary Problems. Pitman, Boston. Res. Notes Math. 59 (1982). | MR | Zbl
and ,[15] Variational Principles and Free-Boundary Problems. Wiley, New York (1982). | MR | Zbl
,[16] Some remarks on finite element analysis of time-dependent field problems, in Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, Tokyo (1973) 91-106. | Zbl
,[17] Operator Theory and Numerical Methods. North-Holland, Amsterdam (2001). | MR | Zbl
, and ,[18] On a class of similarity solutions of the porous media equation. J. Math. Anal. Appl. 55 (1976) 351-364. | Zbl
and ,[19] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl
,[20] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. | EuDML | Numdam | Zbl
and ,[21] Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 1703-1722 (1993). | MR | Zbl
, and ,[22] Schrödinger operators with singular potentials. Israel J. Math. 13 (1972) 135-148. | Zbl
,[23] Semi-discretization in time for a fast diffusion equation. J. Math. Anal. Appl. 137 (1989) 354-370. | Zbl
,[24] Numerical solution of a fast diffusion equation. Math. Comp. 68 (1999) 461-485. | Zbl
and ,[25] Error estimates for a nonlinear degenerate parabolic equation. Math. Comp. 59 (1992) 339-358. | Zbl
and ,[26] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655-678. | EuDML | Numdam | Zbl
, and ,[27] Semigroup approach to the Stefan problem with non-linear flux. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 75 (1983) 24-33. | EuDML | Zbl
, and ,[28] Theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal. 26 (1989) 1425-1438. | Zbl
, , and ,[29] Nonlinear Semigroups. Amer. Math. Soc. Colloq. Publ. (1992). | Zbl
,[30] Error estimates for two-phase Stefan problems in several space variables. I. Linear boundary conditions. Calcolo 22 (1985) 457-499. | Zbl
,[31] Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25 (1988) 784-814. | Zbl
, and ,[32] The porous media equation, in Applications of Nonlinear Analysis in the Physical Sciences (Bielefeld, 1979), Surveys Reference Works Math., 6, Pitman, Boston, Mass.-London (1981) 229-241. | Zbl
,[33] Some optimal error estimates for piecewise linear finite element approximation. Math. Comp. 38 (1982) 437-445. | Zbl
and ,[34] Numerical methods for flows through porous media, I. Math. Comp. 40 (1983) 435-467. | Zbl
,[35] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl
and ,[36] An enthalpy formulation of the Stefan problem. SIAM J. Numer. Anal. 19 (1982) 1129-1157. | Zbl
,Cited by Sources: