Blended numerical schemes for the advection equation and conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 997-1019.

In this paper we propose a method to couple two or more explicit numerical schemes approximating the same time-dependent PDE, aiming at creating a new scheme which inherits advantages of the original ones. We consider both advection equations and nonlinear conservation laws. By coupling a macroscopic (Eulerian) scheme with a microscopic (Lagrangian) scheme, we get a new kind of multiscale numerical method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016047
Classification : 65M12, 65M99
Mots clés : Multiscale numerical schemes, hyperbolic problems, conservation laws, advection equation, coupled algorithms, theta methods, filtered schemes, particle level-set method, smoothed-particle hydrodynamics method, particle-in-cell method
Cacace, Simone 1 ; Cristiani, Emiliano 2 ; Ferretti, Roberto 3

1 Dipartimento di Matematica, Sapienza – Università di Roma, Rome, Italy
2 Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Rome, Italy
3 Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
@article{M2AN_2017__51_3_997_0,
     author = {Cacace, Simone and Cristiani, Emiliano and Ferretti, Roberto},
     title = {Blended numerical schemes for the advection equation and conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {997--1019},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {3},
     year = {2017},
     doi = {10.1051/m2an/2016047},
     mrnumber = {3666654},
     zbl = {1369.65098},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016047/}
}
TY  - JOUR
AU  - Cacace, Simone
AU  - Cristiani, Emiliano
AU  - Ferretti, Roberto
TI  - Blended numerical schemes for the advection equation and conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 997
EP  - 1019
VL  - 51
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016047/
DO  - 10.1051/m2an/2016047
LA  - en
ID  - M2AN_2017__51_3_997_0
ER  - 
%0 Journal Article
%A Cacace, Simone
%A Cristiani, Emiliano
%A Ferretti, Roberto
%T Blended numerical schemes for the advection equation and conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 997-1019
%V 51
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016047/
%R 10.1051/m2an/2016047
%G en
%F M2AN_2017__51_3_997_0
Cacace, Simone; Cristiani, Emiliano; Ferretti, Roberto. Blended numerical schemes for the advection equation and conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 3, pp. 997-1019. doi : 10.1051/m2an/2016047. http://www.numdam.org/articles/10.1051/m2an/2016047/

C.K. Birdsall and A.B. Langdon, Plasma physics via computer simulation. CRC Press, Boca Raton (2004).

E. Carlini, R. Ferretti and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27 (2005) 1071–1091. | DOI | MR | Zbl

E. Cristiani, Blending Brownian motion and heat equation. J. Coupled Syst. Multiscale Dyn. 3 (2015) 351–356. | DOI

E. Cristiani, B. Piccoli and A. Tosin, Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Model. Simul. 9 (2011) 155–182. | DOI | MR | Zbl

W. E, Principles of multiscale modeling. Cambridge University Press (2011). | MR | Zbl

D. Enright, R. Fedkiw, J. Ferziger and I. Mitchell, A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183 (2002) 83–116. | DOI | MR | Zbl

M. Falcone and R. Ferretti, Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. SIAM (2014). | MR

B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230 (2011) 818–834. | DOI | MR | Zbl

B.D. Froese and A.M. Oberman, Convergent filtered schemes for the Monge-Ampère partial differential equation. SIAM J. Numer. Anal. 51 (2013) 423–444. | DOI | MR | Zbl

R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375–389. | DOI | Zbl

A. Harten, B. Engquist, S. Osher and S. R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (1987) 231–303. | DOI | MR | Zbl

S.-I. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179 (2002) 238–267. | DOI | Zbl

R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser (1992). | MR | Zbl

X.-D. Liu, S. Osher and T. Chan, Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1994) 200–212. | DOI | MR | Zbl

L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977) 1013–1024. | DOI

S. Marrone, A. Di Mascio and D. Le Touzé, Coupling of Smoothed Particle Hydrodynamics with Finite Volume method for free-surface flows. J. Comput. Phys. 310 (2016) 161–180. | DOI | MR | Zbl

A. M. Oberman and T. Salvador, Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes. J. Comput. Phys. 284 (2015) 367–388. | DOI | MR | Zbl

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | MR | Zbl

K. Puri and P. Ramachandran, Approximate Riemann solvers for the Godunov SPH (GSPH). J. Comput. Phys. 270 (2014) 432–458. | DOI | MR | Zbl

C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE Report No. 97–65 (1997). | MR | Zbl

Cité par Sources :