Maxwell’s equations for conductors with impedance boundary conditions: Discontinuous Galerkin and Reduced Basis Methods
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 6, pp. 1763-1787.

We consider Maxwell’s equations with impedance boundary conditions on a conductive polyhedron with polyhedral holes. Well-posedness of the variational formulation is proven, a hp-discontinuous Galerkin (hp-dG) approximation as well as a priori error estimates are introduced. Next, we use the frequency ω as a parameter in a multi-query context. For this purpose, we derive a Reduced Basis Method (RBM) based upon the dG formulation as well as the corresponding a posteriori error bound. Numerical results indicate the efficiency and the robustness of the scheme.

Received:
Accepted:
DOI: 10.1051/m2an/2016006
Classification: 35Q61, 65N30, 65N15
Keywords: Maxwell’s equations, impedance, conductor, discontinuous Galerkin, Reduced Basis Method
Kirchner, Kristin 1; Urban, Karsten 2; Zeeb, Oliver 2

1 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Gothenburg, Sweden.
2 University of Ulm, Institute for Numerical Mathematics, Helmholtzstrasse 18, 89069 Ulm, Germany.
@article{M2AN_2016__50_6_1763_0,
     author = {Kirchner, Kristin and Urban, Karsten and Zeeb, Oliver},
     title = {Maxwell{\textquoteright}s equations for conductors with impedance boundary conditions: {Discontinuous} {Galerkin} and {Reduced} {Basis} {Methods}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1763--1787},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016006},
     zbl = {1355.35177},
     mrnumber = {3580121},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2016006/}
}
TY  - JOUR
AU  - Kirchner, Kristin
AU  - Urban, Karsten
AU  - Zeeb, Oliver
TI  - Maxwell’s equations for conductors with impedance boundary conditions: Discontinuous Galerkin and Reduced Basis Methods
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1763
EP  - 1787
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2016006/
DO  - 10.1051/m2an/2016006
LA  - en
ID  - M2AN_2016__50_6_1763_0
ER  - 
%0 Journal Article
%A Kirchner, Kristin
%A Urban, Karsten
%A Zeeb, Oliver
%T Maxwell’s equations for conductors with impedance boundary conditions: Discontinuous Galerkin and Reduced Basis Methods
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1763-1787
%V 50
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2016006/
%R 10.1051/m2an/2016006
%G en
%F M2AN_2016__50_6_1763_0
Kirchner, Kristin; Urban, Karsten; Zeeb, Oliver. Maxwell’s equations for conductors with impedance boundary conditions: Discontinuous Galerkin and Reduced Basis Methods. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 6, pp. 1763-1787. doi : 10.1051/m2an/2016006. http://www.numdam.org/articles/10.1051/m2an/2016006/

R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). | MR | Zbl

A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68 (1999) 607–631. | DOI | MR | Zbl

P.R. Amestoy, I.S. Duff, J. Koster and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23 (2001) 15–41. | DOI | MR | Zbl

P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Computing 32 (2006) 136–156. | DOI | MR

D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. | DOI | MR | Zbl

C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893–1916. | DOI | MR | Zbl

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova and P. Wojtaszczyk, Convergence Rates for Greedy Algorithms in Reduced Basis Methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. | DOI | MR | Zbl

A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | DOI | MR | Zbl

A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering. In Topics in Computational Wave Propagation. Vol. 31 of Lect. Notes Comput. Sci. Eng. Springer Berlin Heidelberg (2003) 83–124. | MR | Zbl

Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodríguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM: M2AN 43 (2009) 1099–1116. | DOI | Numdam | MR | Zbl

Y. Chen, J.S. Hesthaven, Y. Maday and J. Rodríguez, Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32 (2010) 970–996. | DOI | MR | Zbl

P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numer. 9 (1975) 77–84. | Numdam | MR | Zbl

J.L. Eftang, A.T. Patera and E.M. Rønquist, An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput. 32 (2010) 3170–3200. | DOI | MR | Zbl

J.L. Eftang, D.J. Knezevic and A.T. Patera, An “hp” certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst. 17 (2011) 395–422. | DOI | MR | Zbl

M. Fares, J.S. Hesthaven, Y. Maday and B. Stamm, The reduced basis method for the electric field integral equation. J. Comp. Phys. 230 (2011) 5532–5555. | DOI | MR | Zbl

M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. J. Comp. Phys. 231 (2012) 7756–7779. | DOI | MR | Zbl

G.N. Gatica and S. Meddahi, Finite element analysis of a time harmonic Maxwell problem with an impedance boundary condition. IMA J. Numer. Anal. 32 (2012) 534–552. | DOI | MR | Zbl

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer (1986). | MR | Zbl

M.W. Hess and P. Benner, Fast Evaluation of Time-Harmonic Maxwell’s Equations Using the Reduced Basis Method. IEEE Trans. Microw. Theory Tech. 61 (2013) 2265–2274. | DOI

J.S. Hesthaven, B. Stamm and S. Zhang, Certified reduced basis method for the electric field integral equation. SIAM J. Sci. Comput. 34 (2012) A1777–A1799. | DOI | MR | Zbl

R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82 (2013) 247–268. | DOI | MR | Zbl

P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518. | DOI | MR | Zbl

D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris Series I 345 (2007) 473–478. | DOI | MR | Zbl

S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems. C. R. Math. Acad. Sci. Paris 349 (2011) 1233–1238. | DOI | MR | Zbl

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR | Zbl

P. Monk, Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2003). | MR | Zbl

F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35 (2013) A2316 – A2340. | DOI | MR | Zbl

I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179–1214. | DOI | MR | Zbl

J. Pomplun and F. Schmidt, Accelerated a posteriori error estimation for the reduced basis method with application to 3D electromagnetic scattering problems. SIAM J. Sci. Comput. 32 (2010) 498–520. | DOI | MR | Zbl

G. Rozza, D.B. Phuong Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Methods. Eng. 15 (2008) 229–275. | DOI | MR | Zbl

D. Sármány, F. Izsák and J.J.W. Van Der Vegt, Optimal penalty parameters for symmetric discontinuous Galerkin discretisations of the time-harmonic Maxwell equations. J. Sci. Comput. 44 (2010) 219–254. | DOI | MR | Zbl

T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765–2773. | DOI | MR | Zbl

Cited by Sources: