Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 5, pp. 1269-1287.

In this paper we investigate numerically the model for pedestrian traffic proposed in [B. Andreianov, C. Donadello, M.D. Rosini, Math. Models Methods Appl. Sci. 24 (2014) 2685−2722]. We prove the convergence of a scheme based on a constraint finite volume method and validate it with an explicit solution obtained in the above reference. We then perform ad hoc simulations to qualitatively validate the model under consideration by proving its ability to reproduce typical phenomena at the bottlenecks, such as Faster Is Slower effect and the Braess’ paradox.

Received:
Accepted:
DOI: 10.1051/m2an/2015078
Classification: 35L65, 90B20, 65M12, 76M12
Keywords: Finite volume scheme, scalar conservation law, non-local point constraint, crowd dynamics, capacity drop, Braess’ paradox, Faster Is Slower
Andreianov, Boris 1, 2; Donadello, Carlotta 1; Razafison, Ulrich 1; Rosini, Massimiliano D. 3

1 Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 25030 16 route de Gray, 25030 Besançon cedex, France.
2 LMPT CNRS UMR 7350, 37200 Tours, France.
3 Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin, Poland.
@article{M2AN_2016__50_5_1269_0,
     author = {Andreianov, Boris and Donadello, Carlotta and Razafison, Ulrich and Rosini, Massimiliano D.},
     title = {Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1269--1287},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015078},
     zbl = {1370.65042},
     mrnumber = {3554543},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015078/}
}
TY  - JOUR
AU  - Andreianov, Boris
AU  - Donadello, Carlotta
AU  - Razafison, Ulrich
AU  - Rosini, Massimiliano D.
TI  - Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1269
EP  - 1287
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015078/
DO  - 10.1051/m2an/2015078
LA  - en
ID  - M2AN_2016__50_5_1269_0
ER  - 
%0 Journal Article
%A Andreianov, Boris
%A Donadello, Carlotta
%A Razafison, Ulrich
%A Rosini, Massimiliano D.
%T Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1269-1287
%V 50
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015078/
%R 10.1051/m2an/2015078
%G en
%F M2AN_2016__50_5_1269_0
Andreianov, Boris; Donadello, Carlotta; Razafison, Ulrich; Rosini, Massimiliano D. Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 5, pp. 1269-1287. doi : 10.1051/m2an/2015078. http://www.numdam.org/articles/10.1051/m2an/2015078/

B. Andreianov, New approches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM Proc. Surv. 50 (2015) 40–65. | DOI | MR | Zbl

B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape. J. Hyperbolic Differ. Equ. 12 (2015) 343–384. | DOI | MR | Zbl

B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609–645. | DOI | MR | Zbl

B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201 (2011) 27–86. | DOI | MR | Zbl

B. Andreianov, C. Donadello and M.D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop. Math. Models Methods Appl. Sci. 24 (2014) 2685–2722. | DOI | MR | Zbl

B. Andreianov, C. Donadello, U. Razafison and M.D. Rosini, Riemann problems with non–local point constraints and capacity drop. Math. Biosci. Eng. 12 (2015) 259–278. | DOI | MR | Zbl

A. Aw and M. Rascle, Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60 (2000) 916–938. | DOI | MR | Zbl

D.S. Bale, R. Leveque, S. Mitran and J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. | DOI | MR | Zbl

E.M. Cepolina, Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian flows. Fire Safety J. 44 (2009) 532–544. | DOI

C. Cancès and N. Seguin, Error estimate for Godounov approximation of locally constrained conservation laws SIAM J. Numer. Anal. 50 (2012) 3036–3060. | DOI | MR | Zbl

C. Chalons, Numerical Approximation of a Macroscopic Model of Pedestrian Flows. SIAM J. Sci. Comput. 29 (2007) 539–555. | DOI | MR | Zbl

C. Chalons, P. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling. Netw. Heterog. Media 8 (2013) 433–463. | DOI | MR | Zbl

R.M. Colombo and M.D. Rosini, Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005) 1553–1567. | DOI | MR | Zbl

R.M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654–675. | DOI | MR | Zbl

R.M. Colombo and M.D. Rosini, Existence of nonclassical solutions in a Pedestrian flow model. Nonlin. Anal. Real World Appl. 10 (2009) 2716–2728. | DOI | MR | Zbl

R.M. Colombo, G. Facchi, G. Maternini and M.D. Rosini, On the continuum modeling of crowds. In vol. 67 of Hyperbolic Problems: Theory, Numerics and Applications, Proc. of Sympos. Appl. Math. AMS, Providence, RI (2009) 517–526. | MR | Zbl

R.M. Colombo, P. Goatin, and M.D. Rosini, A macroscopic model for pedestrian flows in panic situations. GAKUTO Int. Series Math. Sci. Appl. 32 (2010) 255–272. | MR | Zbl

R.M. Colombo, P. Goatin and M.D. Rosini, On the modelling and management of traffic. ESAIM: M2AN 45 (2011) 853–872. | DOI | Numdam | MR | Zbl

E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New York (1996). | MR | Zbl

B.D. Greenshields, A Study of Traffic Capacity, In vol. 14 of Proc. Highway Res. Board (1934) 448–477.

D. Helbing, I. Farkas and T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487–490. | DOI

D. Helbing, A. Johansson and H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study. Phys. Rev. E 75 (2007) 046109. | DOI

S.P. Hoogendoorn and W. Daamen, Pedestrian behavior at bottlenecks. Transport. Sci. 39 (2005) 147–159. | DOI

R.L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech. 35 (2003) 169–182. | DOI | MR | Zbl

V.A. Kopylow, The study of people’ motion parameters under forced egress situations. Ph.D. thesis, Moscow Civil Engineering Institute (1974).

T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur and M. Schreckenberg, Experimental study of pedestrian counterflow in a corridor. J. Statist. Mech. 2006 (2006) P10001. | DOI

S.N. Kruzhkov, First order quasilinear equations with several independent variables. Mat. Sb. 81 (1970) 228–255. | MR | Zbl

R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl

M.J. Lighthill and G.B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads. Proc. Roy. Soc. London Ser. A 229 (1995) 317–345. | MR | Zbl

D.R. Parisi and C.O. Dorso, Microscopic dynamics of pedestrian evacuation. Physica A 354 (2005) 606–618. | DOI

P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. | DOI | MR | Zbl

M.D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model. J. Differ. Eq. 246 (2009) 408–427. | DOI | MR | Zbl

M.D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications. Springer, Heidelberg (2013). | MR | Zbl

A. Schadschneider, W. Klingsch, H. Klüpfel and T. Kretz, C. Rogsch and A. Seyfried, Evacuation Dynamics: Empirical Results, Modeling and Applications. In Extreme Environmental Events, edited by R.A. Meyers. Springer (2011) 517–550.

A. Seyfried, T. Rupprecht, A. Winkens, O. Passon, B. Steffen, W. Klingsch and M. Boltes, Capacity Estimation for Emergency Exits and Bottlenecks. In Interflam 2007 (2007) 247–258.

S.A. Soria, R. Josens and D.R. Parisi, Experimental evidence of the “Faster is Slower” effect in the evacuation of ants. Safety Sci. 50 (2012) 1584–1588. | DOI

H.M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transport. Res. Part B 36 (2002) 275–290. | DOI

X.L. Zhang, W.G. Weng, H.Y. Yuan and J.G. Chen, Empirical study of a unidirectional dense crowd during a real mass event. Physica. A 392 (2013) 2781–2791. | DOI | MR | Zbl

Cited by Sources: