The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 4, pp. 945-964.

The “interaction picture” (IP) method is a very promising alternative to Split-Step methods for solving certain type of partial differential equations such as the nonlinear Schrödinger equation used in the simulation of wave propagation in optical fibers. The method exhibits interesting convergence properties and is likely to provide more accurate numerical results than cost comparable Split-Step methods such as the Symmetric Split-Step method. In this work we investigate in detail the numerical properties of the IP method and carry out a precise comparison between the IP method and the Symmetric Split-Step method.

Received:
DOI: 10.1051/m2an/2015060
Classification: 65M12, 65M15, 65L06, 65T50, 78A60
Keywords: Interaction picture method, symmetric Split-Step method, Runge−Kutta method, nonlinear optics, nonlinear Schrödinger equation
Balac, Stéphane 1; Fernandez, Arnaud 1; Mahé, Fabrice 2; Méhats, Florian 2; Texier-Picard, Rozenn 3

1 FOTON, Université de Rennes I, CNRS, UEB, Enssat, 6 rue de Kerampont, 22305 Lannion, France.
2 IRMAR, Université de Rennes I, CNRS, UEB, Campus de Beaulieu, 35042 Rennes, France.
3 IRMAR, ENS Rennes, CNRS, UEB, av. R. Schuman, 35170 Bruz, France.
@article{M2AN_2016__50_4_945_0,
     author = {Balac, St\'ephane and Fernandez, Arnaud and Mah\'e, Fabrice and M\'ehats, Florian and Texier-Picard, Rozenn},
     title = {The {Interaction} {Picture} method for solving the generalized nonlinear {Schr\"odinger} equation in optics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {945--964},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4},
     year = {2016},
     doi = {10.1051/m2an/2015060},
     zbl = {1401.78014},
     mrnumber = {3521707},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015060/}
}
TY  - JOUR
AU  - Balac, Stéphane
AU  - Fernandez, Arnaud
AU  - Mahé, Fabrice
AU  - Méhats, Florian
AU  - Texier-Picard, Rozenn
TI  - The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 945
EP  - 964
VL  - 50
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015060/
DO  - 10.1051/m2an/2015060
LA  - en
ID  - M2AN_2016__50_4_945_0
ER  - 
%0 Journal Article
%A Balac, Stéphane
%A Fernandez, Arnaud
%A Mahé, Fabrice
%A Méhats, Florian
%A Texier-Picard, Rozenn
%T The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 945-964
%V 50
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015060/
%R 10.1051/m2an/2015060
%G en
%F M2AN_2016__50_4_945_0
Balac, Stéphane; Fernandez, Arnaud; Mahé, Fabrice; Méhats, Florian; Texier-Picard, Rozenn. The Interaction Picture method for solving the generalized nonlinear Schrödinger equation in optics. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 4, pp. 945-964. doi : 10.1051/m2an/2015060. http://www.numdam.org/articles/10.1051/m2an/2015060/

G. Agrawal, Nonlinear fiber optics. Academic Press, 4th edition (2006).

L. Auslander and F.A. Grunbaum, The Fourier transform and the discrete Fourier transform. Inverse Probl. 5 (1989) 149–164. | DOI | MR | Zbl

S. Balac, High order Embedded Runge-Kutta scheme for step-size control in the Interaction Picture method. J. KSIAM 17 (2013) 238–266. | MR | Zbl

S. Balac and A. Fernandez, Mathematical analysis of adaptive step-size techniques when solving the nonlinear Schrödinger equation for simulating light-wave propagation in optical fibers. Opt. Commun. 329 (2014) 1–9. | DOI

S. Balac and F. Mahé, Embedded Runge-Kutta scheme for step-size control in the Interaction Picture method. Comput. Phys. Commun. 184 (2013) 1211–1219. | DOI | MR | Zbl

C. Besse, B. Bidégaray and S. Descombes. Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. | DOI | MR | Zbl

J.C. Butcher, Numerical Methods for Ordinary Differential Equations. John Wiley and Sons (2008). | MR | Zbl

B. Cano and A. González-Pachón, Plane waves numerical stability of some explicit exponential methods for cubic Schrödinger equation. See http://hermite.mac.cie.uva.es/bego/cgp3.pdf (2013).

B. Cano and A. González-Pachón, Exponential time integration of solitary waves of cubic Schrödinger equation. Appl. Numer. Math. 91 (2015) 26–45. | DOI | MR | Zbl

B.M. Caradoc−Davies. Vortex dynamics in Bose-Einstein condensate. Ph. D. thesis, University of Otago (NZ) (2000).

R. Carles, Semi-classical Analysis for Nonlinear Schrödinger Equations. World Scientific (2008). | MR | Zbl

T. Cazenave, Semilinear Schrödinger Equations. Courant Lect. Notes Math. AMS, New York (2003). | MR | Zbl

T. Cazenave and A. Haraux, Introduction aux problèmes d’évolution semi-linéaires. Ellipses, Paris (1990). | MR | Zbl

E. Celledoni, D. Cohen and B. Owren, Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8 (2008) 303–317. | DOI | MR | Zbl

D. Cohen and L. Gauckler, One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52 (2012) 877–903. | DOI | MR | Zbl

S.M. Cox and P.C. Matthews, Exponential time-differencing for stiff systems. J. Comput. Phys. 176 (2002) 430–455. | DOI | MR | Zbl

M.J. Davis, Dynamics in Bose-Einstein condensate. Ph. D. thesis, University of Oxford (UK) (2001).

J.R. Dormand and P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. | DOI | MR | Zbl

G. Dujardin, Exponential Runge-Kutta methods for the Schrödinger equation. Appl. Numer. Math. 59 (2009) 1839–1857. | DOI | MR | Zbl

B.L. Ehle and J.D. Lawson, Generalized Runge-Kutta processes for stiff initial-value problems. J. Inst. Math. Appl. 16 (1975) 11–21. | DOI | MR | Zbl

C.L. Epstein. How well does the finite Fourier transform approximate the Fourier transform? Commun. Pure Appl. Math. 58 (2005) 1421–1435. | DOI | MR | Zbl

A. Fernandez, S. Balac, A. Mugnier, F. Mahé, R. Texier-Picard, T. Chartier and D. Pureur, Numerical simulation of incoherent optical wave propagation in nonlinear fibers. Eur. Phys. J. Appl. Phys. 64 (2013) 24506/1–11. | DOI

M. Guenin, On the interaction picture. Commun. Math. Phys. 3 (1966) 120–132. | DOI | MR | Zbl

E. Hairer, S. P. Norsett and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag New York, Inc., New York, USA (1993). | MR | Zbl

A. Heidt, Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers. J. Lightwave Technol. 27 (2009) 3984–3991. | DOI

M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. | DOI | MR | Zbl

J. Hult, A fourth-order Runge–Kutta in the Interaction Picture method for simulating supercontinuum generation in optical fibers. J. Lightwave Technol. 25 (2007) 3770–3775. | DOI

A.-K. Kassam and L.N. Trefethen. Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26 (2005) 1214–1233. | DOI | MR | Zbl

J. D. Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 (1967) 372–380. | DOI | MR | Zbl

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comput. 77 (2008) 2141–215. | DOI | MR | Zbl

G.M. Muslu and H.A. Erbay, A split-step Fourier method for the complex modified Korteweg de Vries equation. Comput. Math. Appl. 45 (2003) 503–514. | DOI | MR | Zbl

O.V. Sinkin, R. Holzlöhner, J. Zweck and C.R. Menyuk, Optimization of the Split-Step Fourier method in modeling optical-fiber communications systems. J. Lightwave Technol. 21 (2003) 61. | DOI

M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations. SIAM J. Numer. Anal. 50 (2012) 3231–3258. | DOI | MR | Zbl

J.S. Townsend, A modern approach to quantum mechanics. Internat. Series Pure Appl. Phys. University Science Books (2000).

J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrodinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. | DOI | MR | Zbl

Cited by Sources: