Electrode modelling: The effect of contact impedance
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 2, pp. 415-431.

The most realistic model for current-to-voltage measurements of electrical impedance tomography is the complete electrode model which takes into account electrode shapes and contact impedances at the electrode/object interfaces. When contact impedances are small, numerical instability can be avoided by replacing the complete model with the shunt model in which perfect contacts, that is zero contact impedances, are assumed. In the present work we show that using the shunt model causes only a (almost) linear error with respect to the contact impedances in modelling absolute current-to-voltage measurements. Moreover, we note that the electric potentials predicted by the two models exhibit different Sobolev regularity properties. This causes, in particular, different convergence rates for a widely used finite element approximation of the potentials. The theoretical results are backed up by two-dimensional numerical experiments.

Received:
DOI: 10.1051/m2an/2015049
Classification: 35Q60, 65N15, 35J25, 65L11
Keywords: Electric impedance tomography, complete electrode model, shunt model, mixed boundary conditions, elliptic boundary value problems
Dardé, Jérémi 1; Staboulis, Stratos 2

1 Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS IMT, 118 route de Narbonne, 31062 Toulouse cedex 9, France
2 Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Finland
@article{M2AN_2016__50_2_415_0,
     author = {Dard\'e, J\'er\'emi and Staboulis, Stratos},
     title = {Electrode modelling: {The} effect of contact impedance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {415--431},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015049},
     mrnumber = {3482549},
     zbl = {1339.35304},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015049/}
}
TY  - JOUR
AU  - Dardé, Jérémi
AU  - Staboulis, Stratos
TI  - Electrode modelling: The effect of contact impedance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 415
EP  - 431
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015049/
DO  - 10.1051/m2an/2015049
LA  - en
ID  - M2AN_2016__50_2_415_0
ER  - 
%0 Journal Article
%A Dardé, Jérémi
%A Staboulis, Stratos
%T Electrode modelling: The effect of contact impedance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 415-431
%V 50
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015049/
%R 10.1051/m2an/2015049
%G en
%F M2AN_2016__50_2_415_0
Dardé, Jérémi; Staboulis, Stratos. Electrode modelling: The effect of contact impedance. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 2, pp. 415-431. doi : 10.1051/m2an/2015049. http://www.numdam.org/articles/10.1051/m2an/2015049/

D.C. Barber and B.H. Brown, Applied potential tomography. J. Phys. E: Sci. Instrum. 17 (1984) 723–733. | DOI

L. Borcea, Electrical impedance tomography. Inv. Prob. 18 (2002) R99–R136. | DOI | MR | Zbl

S. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Method. Springer-Verlag (2008). | MR

M. Cheney, D. Isaacson and J. C. Newell, Electrical Impedance Tomography. SIAM Rev. 41 (1999) 85–101. | DOI | MR | Zbl

K.-S. Cheng, D. Isaacson, J.S. Newell and J.C. Newell, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Engrg. 36, (1989) 918–924. | DOI

M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Commun. Partial Differ. Equ. 21 (1996) 1919–1949. | DOI | MR | Zbl

M. Costabel, M. Dauge and M. Suri, Numerical approximation of a singularly perturbed contact problem, Comput. Methods Appl. Mech. Engrg. 157 (1998) 349–363. | DOI | MR | Zbl

J. Dardé, N. Hyvönen, A. Seppänen and S. Staboulis, Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation. Inv. Prob. 29 (2013) 085004. | DOI | MR | Zbl

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. In vol. 2. Springer-Verlag, Berlin (1988).

L.C. Evans, Partial Differential Equations, 2nd edition. Amer. Math. Soc. (2010). | MR

H. Hakula, L. Harhanen and N. Hyvönen, Sweep data of electrical impedance tomography. Inv. Prob. 27 (2011) 115006. | DOI | MR | Zbl

H. Hakula, N. Hyvönen and T. Tuominen, On hp-adaptive solution of complete electrode forward problems of electrical impedance tomography. J. Comput. Appl. Math. 236 (2012) 4635–4659. | DOI | MR | Zbl

M. Hanke, M. Brühl, Recent progress in electrical impedance tomography, Inv. Prob. 19 (2003) S65. | DOI | MR | Zbl

M. Hanke, B. Harrach and N. Hyvönen, Justification of point electrode models in electrical impedance tomography. Math. Models Methods Appl. Sci. 21 (2011) 1395–1413. | DOI | MR | Zbl

L. Harhanen, N. Hyvönen, H. Majander and S. Staboulis, Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography. Preprint (2014). | arXiv | MR

L.M. Heikkinen, T. Vilhunen, R.M. West and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 13 (2002) 1855–1861. | DOI

N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64 (2004) 902–931. | DOI | MR | Zbl

N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements. Math. Models Methods Appl. Sci. 19 (2009) 1185–1202. | DOI | MR | Zbl

M. Juntunen and R. Stenberg, Nitsche’s method for general boundary conditions. Math. Comput. 78 (2008) 1353–1374. | DOI | MR | Zbl

J-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, Berlin (1972). | MR | Zbl

J. Nečas, Direct Methods in the Theory of Elliptic Equations. Springer–Verlag (2012). | MR | Zbl

M. Pidcock, S. Ciulli and S. Ispas, Singularities of mixed boundary value problems in electrical impedance tomography. Physiol. Meas. 16 (1995) A213–A218. | DOI

G. Savaré, Regularity and perturbation results for mixed second order elliptic problems. Commun. Partial Differ. Equ. 22 (1997) 869–899. | DOI | MR | Zbl

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52 (1992) 1023–1040. | DOI | MR | Zbl

G. Uhlmann, Electrical impedance tomography and Calderón’s problem. Inv. Prob. 25 (2009) 123011. | DOI | MR | Zbl

P. J. Vauhkonen, M. Vauhkonen, T. Savolainen, and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans. Biomed. Eng. 46 (1999) 1150–1160. | DOI

T. Vilhunen, J. P. Kaipio, P. J. Vauhkonen, T. Savolainen and M. Vauhkonen, Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas. Sci. Technol. 13 (2002) 1848–1854. | DOI

J. Wloka, Partial Differential Equations. Cambridge University Press (1982). | MR | Zbl

Cited by Sources: