Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 1, pp. 263-288.

We propose a new spectral method for solving multi-dimensional second order elliptic equations with varying coefficients in the whole space. This method employs an orthogonal family of quasi-rational functions recently discovered by Arar and Boulmezaoud. After proving an error estimate, we present some computational tests which demonstrate the efficiency of the method and the significance of its developmental potential.

DOI: 10.1051/m2an/2015042
Classification: 65N35, 35A01, 35C10, 35C20, 65J99
Mots-clés : Unbounded domains, spectral methods, rational functions, approximation, the whole space
Boulmezaoud, T.Z. 1; Arar, N. 2; Kerdid, N. 3; Kourta, A. 2

1 Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin-en-Yvelines 45, avenue des Etats-Unis, 78035, Versailles, cedex, France
2 Department of Mathematics, University Constantine 1, Constantine, Algeria
3 IMSIU, College of Sciences, Department of Mathematics and Statistics, PO-Box 90950, 11623 Riyadh, KSA
@article{M2AN_2016__50_1_263_0,
     author = {Boulmezaoud, T.Z. and Arar, N. and Kerdid, N. and Kourta, A.},
     title = {Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {263--288},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {1},
     year = {2016},
     doi = {10.1051/m2an/2015042},
     zbl = {1337.65164},
     mrnumber = {3460109},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015042/}
}
TY  - JOUR
AU  - Boulmezaoud, T.Z.
AU  - Arar, N.
AU  - Kerdid, N.
AU  - Kourta, A.
TI  - Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 263
EP  - 288
VL  - 50
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015042/
DO  - 10.1051/m2an/2015042
LA  - en
ID  - M2AN_2016__50_1_263_0
ER  - 
%0 Journal Article
%A Boulmezaoud, T.Z.
%A Arar, N.
%A Kerdid, N.
%A Kourta, A.
%T Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 263-288
%V 50
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015042/
%R 10.1051/m2an/2015042
%G en
%F M2AN_2016__50_1_263_0
Boulmezaoud, T.Z.; Arar, N.; Kerdid, N.; Kourta, A. Discretization by rational and quasi-rational functions of multi-dimensional elliptic problems in the whole space. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 1, pp. 263-288. doi : 10.1051/m2an/2015042. http://www.numdam.org/articles/10.1051/m2an/2015042/

C. Ahrens and G. Beylkin, Rotationally invariant quadratures for the sphere. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 465 (2009) 3103–3125. | MR | Zbl

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace’s equation in 𝐑 n . J. Math. Pures Appl. 73 (1994) 579–606. | MR | Zbl

N. Arar and T.Z. Boulmezaoud, Eigenfunctions of a weighted Laplace operator in the whole space. J. Math. Anal. Appl. 400 (2013) 161–173. | DOI | MR | Zbl

K. Atkinson and W. Han, Spherical harmonics and approximations on the unit sphere: An introduction. Vol. 2044 of Lect. Notes Math. Springer, Heidelberg (2012). | MR | Zbl

A. Bayliss and E. Turkel, Radiation boundary conditions for wavelike equations. Commun. Pure Appl. Math. 33 (1980) 707–725. | DOI | MR | Zbl

J.-P. Bérenger, A perfectly matched layer for absorption of electromagnetics waves. J. Comput. Phys. 114 (1994) 185–200. | DOI | MR | Zbl

J.-P. Bérenger. Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propag. 44 (1996) 110–117,. | DOI

Ch. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Vol. 10 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer–Verlag, Paris (1992). | MR | Zbl

P. Bettess, Infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 53–64. | DOI | Zbl

P. Bettess and O. C. Zienkiewicz. Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 1271–1290. | DOI | MR | Zbl

T.Z. Boulmezaoud. On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633–669. | DOI | MR | Zbl

T.Z. Boulmezaoud, On the invariance of weighted Sobolev spaces under Fourier transform. C. R. Math. Acad. Sci. Paris 339 (2004) 861–866. | DOI | MR | Zbl

T.Z. Boulmezaoud, Inverted finite elements: a new method for solving elliptic problems in unbounded domains. ESAIM: M2AN 39 (2005) 109–145. | DOI | Numdam | MR | Zbl

T.Z. Boulmezaoud and K. Kaliche, A new numerical method for the model of solvation in continuum anisotropic dielectrics. In preparation (2015).

T.Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space. Hiroshima Math. J. 35 (2005) 371–401. | DOI | MR | Zbl

T.Z. Boulmezaoud, S. Mziou and T. Boudjedaa, Numerical approximation of second-order elliptic problems in unbounded domains. J. Sci. Comput. 60 (2014) 295–312. | DOI | MR | Zbl

J.P. Boyd, Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70 (1987) 63–88. | DOI | MR | Zbl

J.P. Boyd, Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69 (1987) 112–142. | DOI | MR | Zbl

C.A. Brebbia, J.C.F. Telles and L.C. Wrobel, Boundary Element Techniques. Springer-Verlag, Berlin (1984). | MR | Zbl

F. Brezzi, C. Johnson and J.-C. Nédélec, On the Coupling of Boundary Integral and Finite Element Methods. In Proc. of the Fourth Symposium on Basic Problems of Numerical Mathematics Plzevn. Charles Univ., Prague (1978) 103–114. | MR | Zbl

D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798–2816. | DOI | MR

C. Canuto, S. I. Hariharan and L. Lustman, Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505–520. | DOI | MR | Zbl

C. Carstensen, D. Zarrabi and E.P. Stephan, On the h-adaptive coupling of FE and BE for viscoplastic and elastoplastic interface problems. J. Comput. Appl. Math. 75 (1996) 345–363. | DOI | MR | Zbl

J. Céa, Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier Grenoble 14 (1964) 345–444. | DOI | Numdam | MR | Zbl

Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl

D.L. Colton and R. Kress, Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). | MR | Zbl

R. Cools, Constructing cubature formulae: the science behind the art. In vol. 6 of Acta Numer. Cambridge Univ. Press, Cambridge (1997) 1–54. | MR | Zbl

M. Costabel and E.P. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27 (1990) 1212–1226. | DOI | MR | Zbl

M. Costabel, V.J. Ervin and E.P. Stephan, Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem. Quart. Appl. Math. 48 (1990) 265–279. | DOI | MR | Zbl

B. Enquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. | DOI | MR | Zbl

B. Enquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32 (1979) 313–357. | DOI | MR | Zbl

D. Funaro, Computational aspects of pseudospectral Laguerre approximations. Appl. Numer. Math. 6 (1990) 447–457. | DOI | MR | Zbl

D. Funaro and O. Kavian, Approximations of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comput. 57 (1990) 597–619. | DOI | MR | Zbl

K. Gerdes and L. Demkowicz, Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements. Comput. Methods Appl. Mech. Engrg. 137 (1996) 239–273. | DOI | MR | Zbl

J. Giroire, Études de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1987).

J. Giroire and J.-C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comput. 32 (1978) 973–990. | DOI | MR | Zbl

B.-Y. Guo, J. Shen and Z.-Q. Wang, A rational approximation and its applications to differential equations on the half line. J. Sci. Comput. 15 (2000) 117–147. | DOI | MR | Zbl

B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227–272. | Numdam | MR | Zbl

W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986).

C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35 (1980) 1063–1079. | DOI | MR | Zbl

Q.T. Le Gia and H.N. Mhaskar, Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47 (2008/09) 440–466. | MR | Zbl

J. Lysmer and R.L. Kuhlemeyer, Finite difference model for infinite media. J. Eng. Mech. EMR 95 (1969) 859–877.

Y. Maday, B. Pernaud-Thomas and H. Vandeven, Reappraisal of Laguerre type spectral methods. La Recherche Aerospatiale 6 (1985) 13–35. | MR | Zbl

A.D. Mclaren, Optimal numerical integration on a sphere. Math. Comput. 17 (1963) 361–383. | DOI | MR | Zbl

C. Müller, Spherical harmonics. Vol. 17 of Lect. Notes Math. Springer-Verlag, Berlin (1966). | MR | Zbl

C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces. Vol. 129 of Applied Mathematical Sciences. Springer (1998). | MR | Zbl

A. Ralston and Ph. Rabinowitz, A first course in numerical analysis, 2nd edition. Dover Publications, Inc., Mineola, New York (2001). | MR | Zbl

R.T. Seeley, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121. | DOI | MR | Zbl

Cited by Sources: