A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 1, pp. 1-32.

The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current model. The main difficulties come from the nonconservative nature of the system. A general strategy to derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-negativity preserving property of the corresponding numerical methods are presented. The numerical results provided by the two HLLC solvers are compared between them and also with those obtained with a Roe-type method in a number of 1d and 2d test problems. This comparison shows that, while the quality of the numerical solutions is comparable, the computational cost of the HLLC solvers is lower, as only some partial information of the eigenstructure of the matrix system is needed.

DOI : https://doi.org/10.1051/m2an/2012017
Classification : 65N06,  76B15,  76M20,  76N99
Mots clés : well-balanced, finite volume method, path-conservative, simple Riemann solver, HLLC
     author = {Castro D{\'\i}az, Manuel Jes\'us and Fern\'andez-Nieto, Enrique Domingo and Morales de Luna, Tom\'as and Narbona-Reina, Gladys and Par\'es, Carlos},
     title = {A {HLLC} scheme for nonconservative hyperbolic problems. {Application} to turbidity currents with sediment transport},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {1--32},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {1},
     year = {2013},
     doi = {10.1051/m2an/2012017},
     zbl = {1268.76037},
     mrnumber = {2968693},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2012017/}
AU  - Castro Díaz, Manuel Jesús
AU  - Fernández-Nieto, Enrique Domingo
AU  - Morales de Luna, Tomás
AU  - Narbona-Reina, Gladys
AU  - Parés, Carlos
TI  - A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 2013
DA  - 2013///
SP  - 1
EP  - 32
VL  - 47
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2012017/
UR  - https://zbmath.org/?q=an%3A1268.76037
UR  - https://www.ams.org/mathscinet-getitem?mr=2968693
UR  - https://doi.org/10.1051/m2an/2012017
DO  - 10.1051/m2an/2012017
LA  - en
ID  - M2AN_2013__47_1_1_0
ER  - 
Castro Díaz, Manuel Jesús; Fernández-Nieto, Enrique Domingo; Morales de Luna, Tomás; Narbona-Reina, Gladys; Parés, Carlos. A HLLC scheme for nonconservative hyperbolic problems. Application to turbidity currents with sediment transport. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 47 (2013) no. 1, pp. 1-32. doi : 10.1051/m2an/2012017. http://www.numdam.org/articles/10.1051/m2an/2012017/

[1] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010) 2759-2763. | MR 2595792 | Zbl 1188.65134

[2] M.S. Altinaker, W.H. Graf and E. Hopfinger, Flow structure in turbidity currents. J. Hydr. Res. 34 (1996) 713-718.

[3] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, in Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR 2128209 | Zbl 1086.65091

[4] S.F. Bradford and N.D. Katopodes, Hydrodynamics of turbid underflows. i : Formulation and numerical analysis. J. Hydr. Eng. 125 (1999) 1006-1015.

[5] M.J. Castro, P.G. Lefloch, M.L. Muñoz-Ruiz and C. Parés, Why many theories of shock waves are necessary : Convergence error in formally path-consistent schemes. J. Comput. Phys. 227 (2008) 8107-8129. | MR 2442446 | Zbl 1176.76084

[6] M.J. Castro, E.D. Fernández-Nieto, A.M. Ferreiro, J.A. García-Rodríguez and C. Parés, High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39 (2009) 67-114. | MR 2495820 | Zbl 1203.65131

[7] M. Castro Díaz, E. Fernéndez-Nieto and A. Ferreiro, Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. Comput. Fluids 37 (2008) 299-316. | MR 2645529 | Zbl 1237.76082

[8] M.J. Castro Díaz, E.D. Fernández-Nieto, A.M. Ferreiro and C. Parés, Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes. Comput. Methods Appl. Mech. Eng. 198 (2009) 2520-2538. | MR 2536083 | Zbl 1228.76091

[9] S. Cordier, M. Le and T. Morales De Luna, Bedload transport in shallow water models : Why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34 (2011) 980-989.

[10] G. Dal Maso, P.G. Lefloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548. | MR 1365258 | Zbl 0853.35068

[11] F. Exner, Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsber., Akad. Wissenschaften IIa (1925). | JFM 52.1000.19

[12] E.D. Fernández-Nieto, Modelling and numerical simulation of submarine sediment shallow flows : transport and avalanches. Bol. Soc. Esp. Mat. Apl. S􏿻 MA 49 (2009) 83-103. | MR 2584079 | Zbl 1242.86008

[13] A.C. Fowler, N. Kopteva and C. Oakley, The formation of river channels. SIAM J. Appl. Math. 67 (2007) 1016-1040. | MR 2314195 | Zbl 1117.86002

[14] J. Gallardo, S. Ortega, M. De La Asunción and J. Mantas, Two-Dimensional compact third-order polynomial reconstructions. solving nonconservative hyperbolic systems using GPUs. J. Sci. Comput. 48 (2011) 141-163. | MR 2811695

[15] A. Grass, Sediment transport by waves and currents. SERC London Cent. Mar. Technol. Report No. FL29 (1981).

[16] A. Harten, P.D. Lax and B. Van Leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983). | MR 693713 | Zbl 0565.65051

[17] T.Y. Hou and P.G. Le Floch, Why nonconservative schemes converge to wrong solutions : error analysis. Math. Comput. 62 (1994) 497-530. | MR 1201068 | Zbl 0809.65102

[18] S.M. Khan, J. Imran, S. Bradford and J. Syvitski, Numerical modeling of hyperpycnal plume. Mar. Geol. 222-223 (2005) 193-211.

[19] Y. Kubo, Experimental and numerical study of topographic effects on deposition from two-dimensional, particle-driven density currents. Sediment. Geol. 164 (2004) 311-326.

[20] Y. Kubo and T. Nakajima, Laboratory experiments and numerical simulation of sediment-wave formation by turbidity currents. Mar. Geol. 192 (2002) 105-121.

[21] D.A. Lyn and M. Altinakar, St. Venant-Exner equations for Near-Critical and transcritical flows. J. Hydr. Eng. 128 (2002) 579-587.

[22] E. Meyer-Peter, and R. Müller, Formulas for bed-load transport, in 2nd meeting IAHSR. Stockholm, Sweden (1948) 1-26.

[23] T. Morales De Luna, M.J. Castro Díaz, C. Parés Madroñal and E.D. Fernández Nieto, On a shallow water model for the simulation of turbidity currents. Commun. Comput. Phys. 6 (2009) 848-882. | MR 2672326

[24] T. Morales De Luna, M.J. Castro Díaz and C. Parés Madroñal, A duality method for sediment transport based on a modified Meyer-Peter & Müller model. J. Sci. Comput. 48 (2010) 258-273.

[25] P.H. Morris and D.J. Williams, Relative celerities of mobile bed flows with finite solids concentrations. J. Hydr. Eng. 122 (1996) 311-315.

[26] M.L. Muñoz Ruiz and C. Parés, On the convergence and Well-Balanced property of Path-conservative numerical schemes for systems of balance laws. J. Sci. Comput. 48 (2011) 274-295. | MR 2811703 | Zbl 1230.65102

[27] P. Nielsen, Coastal Bottom Boundary Layers and Sediment Transport. World Scientific Pub. Co. Inc. (1992).

[28] C. Parés, Numerical methods for nonconservative hyperbolic systems : a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300-321 (electronic). | MR 2217384 | Zbl 1130.65089

[29] C. Parés and M.L. Muñoz Ruiz, On some difficulties of the numerical approximation of nonconservative hyperbolic systems. Bol. Soc. Esp. Mat. Apl. 47 (2009) 23-52. | MR 2560340 | Zbl 1242.65169

[30] G. Parker, Y. Fukushima and H.M. Pantin, Self-accelerating turbidity currents. J. Fluid Mech. 171 (1986) 145-181. | Zbl 0609.76058

[31] E.F. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4 (1994) 25-34. | Zbl 0811.76053

[32] E.F. Toro, Shock-capturing methods for free-surface shallow flows. John Wiley (2001). | Zbl 0996.76003

[33] L. Van Rijn, Sediment transport : bed load transport. J. Hydr. Eng. 110 (1984) 1431-1456.

Cité par Sources :