Mathematical and numerical modelling of piezoelectric sensors
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 4, pp. 875-909.

The present work aims at proposing a rigorous analysis of the mathematical and numerical modelling of ultrasonic piezoelectric sensors. This includes the well-posedness of the final model, the rigorous justification of the underlying approximation and the design and analysis of numerical methods. More precisely, we first justify mathematically the classical quasi-static approximation that reduces the electric unknowns to a scalar electric potential. We next justify the reduction of the computation of this electric potential to the piezoelectric domains only. Particular attention is devoted to the different boundary conditions used to model the emission and reception regimes of the sensor. Finally, an energy preserving finite element/finite difference numerical scheme is developed; its stability is analyzed and numerical results are presented.

Classification : 35L05,  35A35,  73R05,  35A40
Mots clés : piezoelectricity, quasi-static approximation, ultrasonic sensors
     author = {Imperiale, Sebastien and Joly, Patrick},
     title = {Mathematical and numerical modelling of piezoelectric sensors},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {875--909},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {4},
     year = {2012},
     doi = {10.1051/m2an/2011070},
     zbl = {1279.78013},
     mrnumber = {2891473},
     language = {en},
     url = {}
Imperiale, Sebastien; Joly, Patrick. Mathematical and numerical modelling of piezoelectric sensors. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 4, pp. 875-909. doi : 10.1051/m2an/2011070.

[1] N. Abboud, G. Wojcik and D.K. Vaughan, Finite element modeling for ultrasonic transducers. SPIE Int. Symp. Medical Imaging (1998).

[2] E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions part i : Models without homogenization. Math. Comput. Model. 26 (1997) 79-106. | MR 1480355 | Zbl 0899.73224

[3] P. Challande, Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 135-140.

[4] G.C. Cohen, Higher-order numerical methods for transient wave equations. Springer (2002). | MR 1870851 | Zbl 0985.65096

[5] E. Dieulesaint and D. Royer, Elastic waves in solids, free and guided propagation. Springer (2000). | MR 1848500 | Zbl 0960.74002

[6] M. Durufle, P. Grob and P. Joly, Influence of gauss and gauss-lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25 (2009) 526-551. | MR 2510746 | Zbl 1167.65057

[7] Y. Gómez-Ullate Ricón and F.M. De Espinosa Freijo, Piezoelectric modelling using a time domain finite element program. J. Eur. Ceram. Soc. 27 (2007) 4153-4157.

[8] T. Ikeda, Fundamentals of piezoelectricity. Oxford science publications (1990).

[9] N.A. Kampanis, V.A. Dougalis and J.A. Ekaterinaris, Effective computational methods for wave propagation. Chapman and Hall/CRC (2008). | MR 2406004 | Zbl 1134.65002

[10] T. Lahrner, M. Kaltenbacher, B. Kaltenbacher, R. Lerch and E. Leder. Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (2008) 465-475.

[11] R. Lerch, Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 233-247.

[12] S. Li, Transient wave propagation in a transversely isotropic piezoelectric half space. Z. Angew. Math. Phys. 51 (2000) 236-266. | MR 1756169 | Zbl 1005.74032

[13] D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems. SIAM J. Math. Anal. 37 (2005) 651-672. | MR 2176119 | Zbl 1127.35064

[14] J. San Miguel, J. Adamowski and F. Buiochi, Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water. ABCM Symposium Series in Mechatronics 2 (2005) 458-464.

[15] P. Monk, Finite element methods for maxwell's equations. Oxford science publications (2003). | Zbl 1024.78009

[16] J.C. Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems. Springer (2001). | MR 1822275 | Zbl 0981.35002

[17] V. Priimenko and M. Vishnevskii, An initial boundary-value problem for model electromagnetoelasticity system. J. Differ. Equ. 235 (2007) 31-55. | MR 2309565 | Zbl 1117.35078

[18] L. Schmerr Jr and S.J. Song, Ultrasonic nondestructive evaluation systems. Springer (2007).

[19] C. Weber and P. Werner, A local compactness theorem for maxwell's equations. Math. Methods Appl. Sci. 2 (1980) 12-25. | MR 561375 | Zbl 0432.35032