A numerical scheme for the quantum Boltzmann equation with stiff collision terms
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 2, pp. 443-463.

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625-7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian (Bose-Einstein or Fermi-Dirac distribution) at each time step and every mesh point, one has to invert a nonlinear equation that connects the macroscopic quantity fugacity with density and internal energy. Setting a good initial guess for the iterative method is troublesome in most cases because of the complexity of the quantum functions (Bose-Einstein or Fermi-Dirac function). In this paper, we propose to penalize the quantum collision term by a ‘classical' BGK operator instead of the quantum one. This is based on the observation that the classical Maxwellian, with the temperature replaced by the internal energy, has the same first five moments as the quantum Maxwellian. The scheme so designed avoids the aforementioned difficulty, and one can show that the density distribution is still driven toward the quantum equilibrium. Numerical results are presented to illustrate the efficiency of the new scheme in both the hydrodynamic and kinetic regimes. We also develop a spectral method for the quantum collision operator.

DOI : https://doi.org/10.1051/m2an/2011051
Classification : 35Q20,  65L04,  76Y05
Mots clés : quantum Boltzmann equation, Bose/Fermi gas, asymptotic-preserving schemes, fluid dynamic limit
     author = {Filbet, Francis and Hu, Jingwei and Jin, Shi},
     title = {A numerical scheme for the quantum Boltzmann equation with stiff collision terms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {443--463},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {2},
     year = {2012},
     doi = {10.1051/m2an/2011051},
     zbl = {1277.82046},
     mrnumber = {2855649},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2011051/}
Filbet, Francis; Hu, Jingwei; Jin, Shi. A numerical scheme for the quantum Boltzmann equation with stiff collision terms. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 46 (2012) no. 2, pp. 443-463. doi : 10.1051/m2an/2011051. http://www.numdam.org/articles/10.1051/m2an/2011051/

[1] L. Arlotti and M. Lachowicz, Euler and Navier-Stokes limits of the Uehling-Uhlenbeck quantum kinetic equations. J. Math. Phys. 38 (1997) 3571-3588. | MR 1455570 | Zbl 0885.35102

[2] T. Carleman, Sur la théorie de l'équation intégrodifférentielle de Boltzmann. Acta Math. 60 (1933) 91-146. | JFM 59.0404.02 | MR 1555365

[3] C. Cercignani, The Boltzmann Equation and Its Applications. Springer-Verlag, New York (1988). | MR 1313028 | Zbl 0646.76001

[4] G. Dimarco and L. Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations. arXiv:1010.1472. | MR 2861709 | Zbl 1298.76150

[5] M. Escobedo and S. Mischler, On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 80 (2001) 471-515. | MR 1831432 | Zbl 1134.82318

[6] F. Filbet and S. Jin, A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229 (2010) 7625-7648. | MR 2674294 | Zbl 1202.82066

[7] F. Filbet, C. Mouhot and L. Pareschi, Solving the Boltzmann equation in NlogN. SIAM J. Sci. Comput. 28 (2006) 1029-1053. | MR 2240802 | Zbl 1174.82012

[8] T. Goudon, S. Jin, J.-G. Liu and B. Yan, Asymptotic-Preserving schemes for kinetic-fluid modeling of disperse two-phase flows. Preprint. | MR 3066185

[9] J.W. Hu and S. Jin, On kinetic flux vector splitting schemes for quantum Euler equations. KRM 4 (2011) 517-530. | MR 2786396 | Zbl 1220.35128

[10] J.W. Hu and L. Ying, A fast spectral algorithm for the quantum Boltzmann collision operator. Preprint. | MR 2911206 | Zbl 1260.82068

[11] R.J. Leveque, Numerical Methods for Conservation Laws, 2nd edition. Birkhäuser Verlag, Basel (1992). | MR 1153252 | Zbl 0723.65067

[12] X. Lu, A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior. J. Statist. Phys. 98 (2000) 1335-1394. | MR 1751703 | Zbl 1005.82026

[13] X. Lu, On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles. J. Statist. Phys. 105 (2001) 353-388. | MR 1861208 | Zbl 1156.82380

[14] X. Lu and B. Wennberg, On stability and strong convergence for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles. Arch. Ration. Mech. Anal. 168 (2003) 1-34. | MR 2029003 | Zbl 1044.76058

[15] P. Markowich and L. Pareschi, Fast, conservative and entropic numerical methods for the Bosonic Boltzmann equation. Numer. Math. 99 (2005) 509-532. | MR 2117737 | Zbl 1204.82031

[16] C. Mouhot and L. Pareschi, Fast algorithms for computing the Boltzmann collision operator. Math. Comput. 75 (2006) 1833-1852. | MR 2240637 | Zbl 1105.76043

[17] L.W. Nordheim, On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119 (1928) 689-698. | JFM 54.0988.05

[18] L. Pareschi and G. Russo, Numerical solution of the Boltzmann equation I. Spectrally accurate approximation of the collision operator. SIAM J. Numer. Anal. 37 (2000) 1217-1245. | MR 1756425 | Zbl 1049.76055

[19] L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129-155. | MR 2231946 | Zbl 1203.65111

[20] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3th edition. Cambridge University Press, Cambridge (2007). | Zbl 0587.65003

[21] E.A. Uehling and G.E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev. 43 (1933) 552-561. | Zbl 0006.33404

[22] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Mechanics I. edited by S. Friedlander and D. Serre, North-Holland (2002) 71-305. | MR 1942465 | Zbl 1170.82369