Asymptotic models for scattering from unbounded media with high conductivity
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 6, pp. 1295-1317.

We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no longer possible. Our new analysis is based on the use of Rellich-type estimates and boundedness of L2 solution operators. We also discuss some numerical experiments concerning these boundary conditions.

Classification : 35C20,  78A40
Mots clés : scattering problems, unbounded domains, asymptotic models, generalized impedance boundary conditions, high conductivity
     author = {Haddar, Houssem and Lechleiter, Armin},
     title = {Asymptotic models for scattering from unbounded media with high conductivity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {1295--1317},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {6},
     year = {2010},
     doi = {10.1051/m2an/2010029},
     zbl = {1206.35066},
     mrnumber = {2769059},
     language = {en},
     url = {}
Haddar, Houssem; Lechleiter, Armin. Asymptotic models for scattering from unbounded media with high conductivity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 6, pp. 1295-1317. doi : 10.1051/m2an/2010029.

[1] M. Artola and M. Cessenat, Diffraction d'une onde électromagnétique par un obstacle borné à permittivité et perméabilité élevées. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 349-354. | Zbl 0748.35048

[2] S.N. Chandler-Wilde and P. Monk, Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal. 37 (2005) 598-618. | Zbl 1127.35030

[3] S.N. Chandler-Wilde and P. Monk, The pml for rough surface scattering. Appl. Numer. Math. 59 (2009) 2131-2154.

[4] S.N. Chandler-Wilde and C.R. Ross, Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane. Math. Meth. Appl. Sci. 19 (1996) 959-976. | Zbl 0863.35032

[5] S.N. Chandler-Wilde, E. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough surfaces in three dimensions. SIAM J. Appl. Math. 66 (2006) 1002-1026. | Zbl 1141.35041

[6] S.N. Chandler-Wilde, P. Monk and M. Thomas, The mathematics of scattering by unbounded, rough, inhomogeneous layers. J. Comput. Appl. Math. 204 (2007) 549-559. | Zbl 1118.78007

[7] P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Meth. Appl. Sci. 16 (2006) 139-160. | Zbl 1134.35317

[8] M. Duruflé, H. Haddar and P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7 (2006) 533-542.

[9] H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Mod. Meth. Appl. Sci. 15 (2005) 1273-1300. | Zbl 1084.35102

[10] F. Ihlenburg, Finite element analysis of acoustic scattering. Springer (1998). | Zbl 0908.65091

[11] A. Lechleiter and S. Ritterbusch, A variational method for wave scattering from penetrable rough layers. IMA J. Appl. Math. (2009) doi:10.1093/imamat/hxp040. | Zbl 1205.78024

[12] W. Mclean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge (2000). | Zbl 0948.35001

[13] J.C. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences 144. Springer-Verlag, Berlin (2001). | Zbl 0981.35002

[14] S.M. Rytov, Calcul du skin-effet par la méthode des perturbations. J. Phys. USSR 2 (1940) 233-242. | JFM 66.1129.02

[15] T.B.A. Senior and J.L. Volakis, Approximate boundary conditions in electromagnetics, IEE Electromagnetic waves series 41. The institution of Electrical Engineers, London (1995). | Zbl 0828.73001

[16] B. Zhang and S.N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces. Math. Meth. Appl. Sci. 26 (2003) 463-488. | Zbl 1016.78006