Some algebraic properties of machine poset of infinite words
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 451-466.

The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.

DOI : https://doi.org/10.1051/ita:2008009
Classification : 03D40,  20F10
Mots clés : infinite words, Mealy machine, poset, algebraic properties
@article{ITA_2008__42_3_451_0,
     author = {Belovs, Aleksandrs},
     title = {Some algebraic properties of machine poset of infinite words},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {451--466},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {3},
     year = {2008},
     doi = {10.1051/ita:2008009},
     zbl = {1167.68030},
     mrnumber = {2434028},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2008009/}
}
TY  - JOUR
AU  - Belovs, Aleksandrs
TI  - Some algebraic properties of machine poset of infinite words
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2008
DA  - 2008///
SP  - 451
EP  - 466
VL  - 42
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2008009/
UR  - https://zbmath.org/?q=an%3A1167.68030
UR  - https://www.ams.org/mathscinet-getitem?mr=2434028
UR  - https://doi.org/10.1051/ita:2008009
DO  - 10.1051/ita:2008009
LA  - en
ID  - ITA_2008__42_3_451_0
ER  - 
Belovs, Aleksandrs. Some algebraic properties of machine poset of infinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 3, pp. 451-466. doi : 10.1051/ita:2008009. http://www.numdam.org/articles/10.1051/ita:2008009/

[1] J. Berstel and J. Karhumäki, Combinatorics on Words - A Tutorial. TUCS Technical Report (No 530, June) (2003). | MR 1965433

[2] J.R. Büchi, On a Decision Method in Restricted Second Order Arithmetic, in Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, edited by E. Nagel et al., Stanford Univ. Press, Stanford, CA (1960) 1-11. | MR 183636

[3] J. Dassow, Completeness Problems in the Structural Theory of Automata. Mathematical Research (Band 7), Akademie-Verlag, Berlin (1981). | MR 654860 | Zbl 0481.68052

[4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order. Cambridge University Press (2002). | MR 1902334 | Zbl 1002.06001

[5] N.J. Fine and H.S. Wilf, Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR 174934 | Zbl 0131.30203

[6] J. Hartmanis and R.E. Stearns, Algebraic Structure Theory of Sequential Machines. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1966). | MR 204224 | Zbl 0154.41701

[7] M. Lothaire, Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-Wesley, Reading, Massachusetts (1983). | MR 675953 | Zbl 0514.20045

[8] M. Lothaire, Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 90, Cambridge University Press, Cambridge (2002). | MR 1905123 | Zbl 1001.68093

[9] A. Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages. Springer-Verlag, Berlin, Heidelberg (1999). | MR 1696498 | Zbl 0935.68056

[10] R. Mcnaughton, Testing and generating infinite sequences by a finite automaton. Inform. Control 9 (1966) 521-530. | MR 213241 | Zbl 0212.33902

[11] G.H. Mealy, A method for synthesizing sequential circuits. Bell System Tech. J. 34 (1955) 1045-1079. | MR 73450

[12] D. Perrin and J.-E. Pin, Infinite words: automata, semigroups, logic and games. Pure Appl. Math. 141 (2004). | Zbl 1094.68052

[13] B.I. Plotkin, I.Ja. Greenglaz and A.A. Gvaramija, Algebraic Structures in Automata and Databases Theory. World Scientific, Singapore, New Jersey, London, Hong Kong (1992). | Zbl 0875.68657

[14] H. Rogers, Theory of recursive functions and effective computability. McGraw-Hill Book Company (1967). | MR 224462 | Zbl 0183.01401

[15] G.E. Sacks, The recursively enumerable degrees are dense. Ann. Math. 80 (1964) 300-312. | MR 166089 | Zbl 0135.00702

[16] S. Seshu, Mathematical models for sequential machines. IRE Mat. Convent, Rec. 7 (1959) 4-16.

[17] K. Wagner, On ω-regular sets. Informatics and Control 43 (1979) 123-177. | MR 553694 | Zbl 0434.68061

[18] V.B. Kudryavcev, S.V. Aleshin and A.S. Podkolzin, An introduction to the theory of automata. Moskva Nauka (1985) (Russian).

[19] A.A. Kurmit, Sequential decomposition of finite automata. Riga Zinatne (1982) (Russian). | MR 684837

[20] B.A. Trahtenbrot and Ya.M. Barzdin, Finite automata, behaviour and synthesis. Moskva Nauka (1970) (Russian). | MR 265078

Cité par Sources :