Complexity of infinite words associated with beta-expansions
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 38 (2004) no. 2, pp. 163-185.

We study the complexity of the infinite word ${u}_{\beta }$ associated with the Rényi expansion of $1$ in an irrational base $\beta >1$. When $\beta$ is the golden ratio, this is the well known Fibonacci word, which is sturmian, and of complexity $ℂ\left(n\right)=n+1$. For $\beta$ such that ${d}_{\beta }\left(1\right)={t}_{1}{t}_{2}\cdots {t}_{m}$ is finite we provide a simple description of the structure of special factors of the word ${u}_{\beta }$. When ${t}_{m}=1$ we show that $ℂ\left(n\right)=\left(m-1\right)n+1$. In the cases when ${t}_{1}={t}_{2}=\cdots ={t}_{m-1}$ or ${t}_{1}>max\left\{{t}_{2},\cdots ,{t}_{m-1}\right\}$ we show that the first difference of the complexity function $ℂ\left(n+1\right)-ℂ\left(n\right)$ takes value in $\left\{m-1,m\right\}$ for every $n$, and consequently we determine the complexity of ${u}_{\beta }$. We show that ${u}_{\beta }$ is an Arnoux-Rauzy sequence if and only if ${d}_{\beta }\left(1\right)=t\phantom{\rule{0.166667em}{0ex}}t\cdots \phantom{\rule{0.166667em}{0ex}}t\phantom{\rule{0.166667em}{0ex}}1$. On the example of $\beta =1+2cos\left(2\pi /7\right)$, solution of ${X}^{3}=2{X}^{2}+X-1$, we illustrate that the structure of special factors is more complicated for ${d}_{\beta }\left(1\right)$ infinite eventually periodic. The complexity for this word is equal to $2n+1$.

DOI: 10.1051/ita:2004009
Classification: 11A63, 11A67, 37B10, 68R15
Keywords: beta-expansions, complexity of infinite words
Frougny, Christiane 1; Masáková, Zuzana ; Pelantová, Edita

1 Université Paris 7 LIAFA, UMR 7089 CNRS 2 place Jussieu 75251 Paris Cedex 05 (France) and Université Paris 8
@article{ITA_2004__38_2_163_0,
author = {Frougny, Christiane and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita},
title = {Complexity of infinite words associated with beta-expansions},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {163--185},
publisher = {EDP-Sciences},
volume = {38},
number = {2},
year = {2004},
doi = {10.1051/ita:2004009},
zbl = {1104.11013},
mrnumber = {2060775},
language = {en},
url = {http://www.numdam.org/articles/10.1051/ita:2004009/}
}
TY  - JOUR
AU  - Frougny, Christiane
AU  - Masáková, Zuzana
AU  - Pelantová, Edita
TI  - Complexity of infinite words associated with beta-expansions
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2004
SP  - 163
EP  - 185
VL  - 38
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2004009/
DO  - 10.1051/ita:2004009
LA  - en
ID  - ITA_2004__38_2_163_0
ER  - 
%0 Journal Article
%A Frougny, Christiane
%A Masáková, Zuzana
%A Pelantová, Edita
%T Complexity of infinite words associated with beta-expansions
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2004
%P 163-185
%V 38
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ita:2004009/
%R 10.1051/ita:2004009
%G en
%F ITA_2004__38_2_163_0
Frougny, Christiane; Masáková, Zuzana; Pelantová, Edita. Complexity of infinite words associated with beta-expansions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 38 (2004) no. 2, pp. 163-185. doi : 10.1051/ita:2004009. http://www.numdam.org/articles/10.1051/ita:2004009/

[1] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 133-143. | MR | Zbl

[2] P. Arnoux et G. Rauzy, Représentation géométrique de suites de complexité $2n+1$. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl

[3] J. Berstel, Recent results on extensions of Sturmian words. J. Algebra Comput. 12 (2003) 371-385. | MR | Zbl

[4] A. Bertrand, Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285A (1977) 419-421. | MR | Zbl

[5] A. Bertrand-Mathis, Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. | Zbl

[6] J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | MR | Zbl

[7] J. Cassaigne, S. Ferenczi and L. Zamboni, Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | Numdam | MR | Zbl

[8] S. Fabre, Substitutions et $\beta$-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR | Zbl

[9] Ch. Frougny, J.-P. Gazeau and R. Krejcar, Additive and multiplicative properties of point sets based on beta-integers. Theoret. Comput. Sci. 303 (2003) 491-516. | MR | Zbl

[10] M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002). | MR | Zbl

[11] W. Parry, On the $\beta$-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR | Zbl

[12] J. Patera, Statistics of substitution sequences. On-line computer program, available at http://kmlinux.fjfi.cvut.cz/~patera/SubstWords.cgi

[13] A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl

[14] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | MR | Zbl

[15] W.P. Thurston, Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).

[16] O. Turek, Complexity and balances of the infinite word of $\beta$-integers for $\beta =1+\sqrt{3}$, in Proc. of Words'03, Turku. TUCS Publication 27 (2003) 138-148. | Zbl

Cited by Sources: