Time and space complexity of reversible pebbling
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 38 (2004) no. 2, pp. 137-161.

This paper investigates one possible model of reversible computations, an important paradigm in the context of quantum computing. Introduced by Bennett, a reversible pebble game is an abstraction of reversible computation that allows to examine the space and time complexity of various classes of problems. We present a technique for proving lower and upper bounds on time and space complexity for several types of graphs. Using this technique we show that the time needed to achieve optimal space for chain topology is Ω(nlgn) for infinitely many n and we discuss time-space trade-offs for chain. Further we show a tight optimal space bound for the binary tree of height h of the form h+Θ(lg * h) and discuss space complexity for the butterfly. These results give an evidence that reversible computations need more resources than standard computations. We also show an upper bound on time and space complexity of the reversible pebble game based on the time and space complexity of the standard pebble game, regardless of the topology of the graph.

DOI: 10.1051/ita:2004008
Classification: 68Q10,  68Q25
Keywords: reversible computations, pebbling
@article{ITA_2004__38_2_137_0,
     author = {Kr\'alovi\v{c}, Richard},
     title = {Time and space complexity of reversible pebbling},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {137--161},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/ita:2004008},
     zbl = {1082.68031},
     mrnumber = {2060774},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2004008/}
}
TY  - JOUR
AU  - Královič, Richard
TI  - Time and space complexity of reversible pebbling
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2004
DA  - 2004///
SP  - 137
EP  - 161
VL  - 38
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2004008/
UR  - https://zbmath.org/?q=an%3A1082.68031
UR  - https://www.ams.org/mathscinet-getitem?mr=2060774
UR  - https://doi.org/10.1051/ita:2004008
DO  - 10.1051/ita:2004008
LA  - en
ID  - ITA_2004__38_2_137_0
ER  - 
%0 Journal Article
%A Královič, Richard
%T Time and space complexity of reversible pebbling
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2004
%P 137-161
%V 38
%N 2
%I EDP-Sciences
%U https://doi.org/10.1051/ita:2004008
%R 10.1051/ita:2004008
%G en
%F ITA_2004__38_2_137_0
Královič, Richard. Time and space complexity of reversible pebbling. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 38 (2004) no. 2, pp. 137-161. doi : 10.1051/ita:2004008. http://www.numdam.org/articles/10.1051/ita:2004008/

[1] C.H. Bennett, Time-space trade-offs for reversible computation. SIAM J. Comput. 18 (1989) 766-776. | MR | Zbl

[2] H. Buhrman, J. Tromp and P. Vitányi, Time and space bounds for reversible simulation, in Proc. ICALP 2001. Springer-Verlag, Lect. Notes Comput. Sci. 2076 (2001). | MR | Zbl

[3] R.Y. Levine and A.T. Sherman, A note on Bennett's time-space tradeoff for reversible computation. SIAM J. Comput. 19 (1990) 673-677. | Zbl

[4] M. Li, J. Tromp and P.M.B. Vitányi, Reversible simulation of irreversible computation. Physica D 120 (1998) 168-176.

[5] M. Li and P.M.B. Vitányi, Reversibility and adiabatic computation: trading time and space for energy. Proc. Roy. Soc. Lond. Ser. A 452 (1996) 1-21. | MR | Zbl

[6] M. Li and P.M.B. Vitányi, Reversible simulation of irreversible computation, in Proc. 11th IEEE Conf. Computational Complexity, Philadelphia, Pennsylvania, May 24-27 (1996).

[7] M.S. Paterson and C.E. Hewitt, Comparative Schematology, in MAC Conf. on Concurrent Systems and Parallel Computation (1970) 119-127.

[8] P. Ružička, Pebbling - The Technique for Analysing Computation Efficiency. SOFSEM'89 (1989) 205-224.

[9] P. Ružička and J. Waczulík, Pebbling Dynamic Graphs in Minimal Space. RAIRO-Inf. Theor. Appl. 28 (1994) 557-565. | Numdam | MR | Zbl

[10] P. Ružička and J. Waczulík, On Time-Space Trade-Offs in Dynamic Graph Pebbling. MFCS'93 711 (1993) 671-681. | Zbl

[11] R. Williams, Space-Efficient Reversible Simulations. DIMACS REU report (July 2000).

[12] A. Zavarský, On the Cost of Reversible Computations: Time-Space Bounds on Reversible Pebbling. Manuscript (1998).

Cited by Sources: