Cohesiveness in promise problems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 47 (2013) no. 4, pp. 351-369.

Promise problems have been introduced in 1985 by S. Even e.a. as a generalization of decision problems. Using a very general approach we study solvability and unsolvability conditions for promise problems of set and language families. We show, that cores of unsolvability are completely determined by partitions of cohesive sets. We prove the existence of cores in unsolvable promise problems assuming certain closure properties for the given set family. Connections to immune sets and complexity cores are presented. Furthermore, results about cohesiveness with respect to the language families from the Chomsky hierarchy are given.

DOI: 10.1051/ita/2013042
Classification: 68Q45
Keywords: promise problems, set and language families, cores of unsolvability, complexity cores, cohesive sets
@article{ITA_2013__47_4_351_0,
     author = {Brandt, Ulrike and Walter, Hermann K.-G.},
     title = {Cohesiveness in promise problems},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {351--369},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {4},
     year = {2013},
     doi = {10.1051/ita/2013042},
     zbl = {1286.68274},
     mrnumber = {3132296},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2013042/}
}
TY  - JOUR
AU  - Brandt, Ulrike
AU  - Walter, Hermann K.-G.
TI  - Cohesiveness in promise problems
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2013
DA  - 2013///
SP  - 351
EP  - 369
VL  - 47
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2013042/
UR  - https://zbmath.org/?q=an%3A1286.68274
UR  - https://www.ams.org/mathscinet-getitem?mr=3132296
UR  - https://doi.org/10.1051/ita/2013042
DO  - 10.1051/ita/2013042
LA  - en
ID  - ITA_2013__47_4_351_0
ER  - 
%0 Journal Article
%A Brandt, Ulrike
%A Walter, Hermann K.-G.
%T Cohesiveness in promise problems
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2013
%P 351-369
%V 47
%N 4
%I EDP-Sciences
%U https://doi.org/10.1051/ita/2013042
%R 10.1051/ita/2013042
%G en
%F ITA_2013__47_4_351_0
Brandt, Ulrike; Walter, Hermann K.-G. Cohesiveness in promise problems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 47 (2013) no. 4, pp. 351-369. doi : 10.1051/ita/2013042. http://www.numdam.org/articles/10.1051/ita/2013042/

[1] K. Ambos-Spies, U. Brandt and M. Ziegler, Real Benefit of Promises and Advice, accepted for presentation at CiE 2013 in vol. 7921 of Lect. Notes Comput. Sci. Springer (2013) 1-11.

[2] R.V. Book, D.-Z. Du, The Existence and Density of Generalized Complexity Cores, in J. ACM 34 (1987) 718-730. | MR

[3] J.L. Balcazar, J. Diaz and J. Gabarro, Structural Complexity I, EATCS Monographs on Theoretical Computer Science. Springer Verlag, Heidelberg (1988). | MR | Zbl

[4] S. Even, A.L. Selman and Y. Yacobi, The Complexity of Promise Problems with Applications to Public-Key Cryptography. Information and Control 61 (1984) 159-173. | MR | Zbl

[5] O. Goldreich, On Promise-Problems, A Survey in Memory of Shimon Even. Dep. Comp. Science, Weizmann Institute of Science (2005). | MR

[6] M.A. Harrison, Introduction to Formal Language Theory. Addison-Wesley Publishing Company (1978). | MR | Zbl

[7] G. Rozenberg and A. Salomaa, Word, Language, Grammar, in vol. 1 of Handbook of Formal Languages. Springer Verlag (1997). | MR

[8] H.R. Jun, Theory of Recursive Functions and Effective Computability. MacGraw-Hill Book Company (1967). | MR | Zbl

[9] R.I. Soare, Recursively enumerable Sets and Degrees. Springer Verlag (1987). | MR | Zbl

Cited by Sources: