By means of a direct and constructive method based on the theory of semi-global solution, the local exact boundary observability is established for one-dimensional first order quasilinear hyperbolic systems with general nonlinear boundary conditions. An implicit duality between the exact boundary controllability and the exact boundary observability is then shown in the quasilinear case.
Classification : 35B37, 93C20, 35L50, 93B07, 35R30
Mots clés : exact boundary observability, exact boundary controllability, semi-global solution, mixed initial-boundary value problem, quasilinear hyperbolic system
@article{COCV_2008__14_4_759_0, author = {Tatsien Li Daqian Li}, title = {Exact boundary observability for quasilinear hyperbolic systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {759--766}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008007}, zbl = {1155.93015}, mrnumber = {2451794}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008007/} }
TY - JOUR AU - Tatsien Li Daqian Li TI - Exact boundary observability for quasilinear hyperbolic systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 DA - 2008/// SP - 759 EP - 766 VL - 14 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008007/ UR - https://zbmath.org/?q=an%3A1155.93015 UR - https://www.ams.org/mathscinet-getitem?mr=2451794 UR - https://doi.org/10.1051/cocv:2008007 DO - 10.1051/cocv:2008007 LA - en ID - COCV_2008__14_4_759_0 ER -
Tatsien Li Daqian Li. Exact boundary observability for quasilinear hyperbolic systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 759-766. doi : 10.1051/cocv:2008007. http://www.numdam.org/articles/10.1051/cocv:2008007/
[1] Observabilité, contrôlabilité et stabilisation frontière du système d'élasticité linéaire. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 519-524. | MR 1443987 | Zbl 0878.73012
and ,[2] Sharp efficient conditions for the observation, control and stabilization of wave from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR 1178650 | Zbl 0786.93009
, and ,[3] Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl. 235 (1999) 13-57. | MR 1758667 | Zbl 0931.35022
, and ,[4] Semi-global solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. 22B (2001) 325-336. | MR 1845753 | Zbl 1005.35058
and ,[5] Local exact boundary controllability for a class of quasilinear hyperbolic systems. Chin. Ann. Math. 23B (2002) 209-218. | MR 1924137 | Zbl 1184.35196
and ,[6] Exact boundary controllability for quasilinear hyperbolic systems. SIAM J. Control Optim. 41 (2003) 1748-1755. | MR 1972532 | Zbl 1032.35124
and ,[7] Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome I: Contrôlabilité Exacte, RMA 8. Masson (1988). | Zbl 0653.93002
,[8] Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | MR 508380 | Zbl 0397.93001
,[9] Identification problem for a one-dimensional vibrating system. Math. Meth. Appl. Sci. 28 (2005) 2037-2059. | MR 2176906 | Zbl 1083.35136
and ,[10] Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. 27B (2006) 643-656. | MR 2273803
,[11] On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37 (1999) 1568-1599. | MR 1710233 | Zbl 0951.35069
,[12] Boundary observability for the space-discretization of the 1- wave equation. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 713-718. | MR 1641762 | Zbl 0910.65051
,[13] Boundary observability for the finite-difference space semi-discretizations of the 2- wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. | MR 1697041 | Zbl 0939.93016
,Cité par Sources :