New -lower semicontinuity and relaxation results for integral functionals defined in BV() are proved, under a very weak dependence of the integrand with respect to the spatial variable . More precisely, only the lower semicontinuity in the sense of the -capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to . Under this further BV dependence, a representation formula for the relaxed functional is also obtained.
Classification : 49J45, 49Q20, 49M20
Mots clés : semicontinuity, relaxation, BV functions, capacity
@article{COCV_2008__14_3_456_0, author = {Fusco, Nicola and Cicco, Virginia De and Amar, Micol}, title = {Lower semicontinuity and relaxation results in {BV} for integral functionals with {BV} integrands}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {456--477}, publisher = {EDP-Sciences}, volume = {14}, number = {3}, year = {2008}, doi = {10.1051/cocv:2007061}, zbl = {1149.49016}, mrnumber = {2434061}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007061/} }
TY - JOUR AU - Fusco, Nicola AU - Cicco, Virginia De AU - Amar, Micol TI - Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 DA - 2008/// SP - 456 EP - 477 VL - 14 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007061/ UR - https://zbmath.org/?q=an%3A1149.49016 UR - https://www.ams.org/mathscinet-getitem?mr=2434061 UR - https://doi.org/10.1051/cocv:2007061 DO - 10.1051/cocv:2007061 LA - en ID - COCV_2008__14_3_456_0 ER -
Fusco, Nicola; Cicco, Virginia De; Amar, Micol. Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 456-477. doi : 10.1051/cocv:2007061. http://www.numdam.org/articles/10.1051/cocv:2007061/
[1] A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91-133. | Numdam | MR 1259102 | Zbl 0842.49016
, and ,[2] Relaxation in for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear). | MR 2408343 | Zbl 1153.49016
and ,[3] A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396-412. | Numdam | MR 2306643
, and ,[4] Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000). | MR 1857292 | Zbl 0957.49001
, and ,[5] Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603-613. | MR 844989 | Zbl 0612.49008
, and ,[6] Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398-420. | MR 961907 | Zbl 0662.46009
and ,[7] A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51-98. | MR 1656477 | Zbl 0921.49004
, and ,[8] Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989). | Zbl 0669.49005
,[9] Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359-396. | MR 978576 | Zbl 0617.49018
, , and ,[10] Integral representation on of -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | MR 567216 | Zbl 0435.49016
,[11] On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85-113. | MR 740203 | Zbl 0543.49001
,[12] An Introduction to -convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[13] A chain rule in and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23-51. | MR 2027846 | Zbl 1056.49019
and ,[14] On -lower semicontinuity in . J. Convex Analysis 12 (2005) 173-185. | MR 2135805 | Zbl 1115.49011
, and ,[15] A chain rule formula in and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427-447. | MR 2293980 | Zbl 1136.49011
, and ,[16] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR 448194 | Zbl 0339.49005
and ,[17] Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.
and ,[18] The Lebesgue set of a function whose distribution derivatives are -th power summable. Indiana Un. Math. J. 22 (1972) 139-158. | MR 435361 | Zbl 0238.28015
and ,[19] On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519-565. | MR 1838501 | Zbl 1003.49015
and ,[20] MR 1177778 | Zbl 0764.49012
and S. Mller, Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. |[21] MR 1218685 | Zbl 0788.49039
and S. Mller, Relaxation of quasiconvex functionals in BV for integrands . Arch. Rat. Mech. Anal. 123 (1993) 1-49. |[22] A remark on the -lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313-323. | MR 2067041 | Zbl 1030.49014
, and ,[23] A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425-433. | MR 2314327
, and ,[24] The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95-114. | MR 2128096
and ,[25] On some sharp conditions for lower semicontinuity in . Diff. Int. Eq. 16 (2003) 51-76. | MR 1948872 | Zbl 1028.49012
, and ,[26] On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477-489. | MR 2044431 | Zbl 1084.49015
,[27] Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515-542. | Numdam | MR 174706 | Zbl 0152.24402
,[28] Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039-1045. | Zbl 0176.44402
,Cité par Sources :