On the curvature and torsion effects in one dimensional waveguides
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808.

We consider the Laplace operator in a thin tube of 3 with a Dirichlet condition on its boundary. We study asymptotically the spectrum of such an operator as the thickness of the tube’s cross section goes to zero. In particular we analyse how the energy levels depend simultaneously on the curvature of the tube’s central axis and on the rotation of the cross section with respect to the Frenet frame. The main argument is a Γ-convergence theorem for a suitable sequence of quadratic energies.

DOI : https://doi.org/10.1051/cocv:2007042
Classification : 49R50,  35P20,  78A50,  81Q15
Mots clés : dimension reduction, Γ-convergence, curvature and torsion, waveguides
@article{COCV_2007__13_4_793_0,
     author = {Bouchitte, Guy and Mascarenhas, M. Lu{\'\i}sa and Trabucho, Lu{\'\i}s},
     title = {On the curvature and torsion effects in one dimensional waveguides},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {793--808},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {4},
     year = {2007},
     doi = {10.1051/cocv:2007042},
     zbl = {1139.49043},
     mrnumber = {2351404},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007042/}
}
TY  - JOUR
AU  - Bouchitte, Guy
AU  - Mascarenhas, M. Luísa
AU  - Trabucho, Luís
TI  - On the curvature and torsion effects in one dimensional waveguides
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
DA  - 2007///
SP  - 793
EP  - 808
VL  - 13
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007042/
UR  - https://zbmath.org/?q=an%3A1139.49043
UR  - https://www.ams.org/mathscinet-getitem?mr=2351404
UR  - https://doi.org/10.1051/cocv:2007042
DO  - 10.1051/cocv:2007042
LA  - en
ID  - COCV_2007__13_4_793_0
ER  - 
Bouchitté, Guy; Mascarenhas, M. Luísa; Trabucho, Luís. On the curvature and torsion effects in one dimensional waveguides. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808. doi : 10.1051/cocv:2007042. http://www.numdam.org/articles/10.1051/cocv:2007042/

[1] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl 0901.35005

[2] B. Chenaud, P. Duclos, P. Freitas and D. Krejčiřík, Geometrically induced discrete specrtum in curved tubes. Differ. Geometry Appl. 23 (2005) 95-105. | Zbl 1078.81022

[3] C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, Research in Applied Mathematics 38. Masson, Paris (1995). | MR 1652238 | Zbl 0910.76002

[4] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[5] P. Duclos and P. Exner, Curvature-induced bounds states in quantum waveguides in two and tree dimensions. Rev. Math. Phys. 7 (1995) 73-102. | Zbl 0837.35037

[6] V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Equations. Springer-Verlag, Berlin (1994). | MR 1329546

[7] P. Kuchment, On some spectral problems of mathematical physics. Partial differential equations and inverse problems., Contemp. Math. 362. Amer. Math. Soc., Providence, RI (2004) 241-276. | Zbl 1061.35065

[8] J. Rubinstein, M. Schatzman, Variational problems on multiply connected thin strips. II. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. 160 (2001) 309-324. | Zbl 0997.49004

[9] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl 0486.35063

Cité par Sources :