This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert space
Keywords: evolution problems, gradient flows, minimizing movements, Young measures, phase transitions, quasistationary models
@article{COCV_2006__12_3_564_0, author = {Rossi, Riccarda and Savar\'e, Giusepp}, title = {Gradient flows of non convex functionals in {Hilbert} spaces and applications}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {564--614}, publisher = {EDP-Sciences}, volume = {12}, number = {3}, year = {2006}, doi = {10.1051/cocv:2006013}, mrnumber = {2224826}, zbl = {1116.34048}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2006013/} }
TY - JOUR AU - Rossi, Riccarda AU - Savaré, Giusepp TI - Gradient flows of non convex functionals in Hilbert spaces and applications JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2006 SP - 564 EP - 614 VL - 12 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2006013/ DO - 10.1051/cocv:2006013 LA - en ID - COCV_2006__12_3_564_0 ER -
%0 Journal Article %A Rossi, Riccarda %A Savaré, Giusepp %T Gradient flows of non convex functionals in Hilbert spaces and applications %J ESAIM: Control, Optimisation and Calculus of Variations %D 2006 %P 564-614 %V 12 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2006013/ %R 10.1051/cocv:2006013 %G en %F COCV_2006__12_3_564_0
Rossi, Riccarda; Savaré, Giusepp. Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM: Control, Optimisation and Calculus of Variations, Volume 12 (2006) no. 3, pp. 564-614. doi : 10.1051/cocv:2006013. http://www.numdam.org/articles/10.1051/cocv:2006013/
[1] Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191-246. | Zbl
,[2] Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, Clarendon Press, Oxford (2000). | MR | Zbl
, and ,[3] N Gigli and G. Savaré, Gradient flows.In metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2005). | MR | Zbl
,[4] Discretization of evolution variational inequalities, Partial differential equations and the calculus of variations, Vol. I, F. Colombini, A. Marino, L. Modica and S. Spagnolo, Eds., Birkhäuser Boston, Boston, MA (1989) 59-92. | Zbl
,[5] A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control Optim. 22 (1984) 570-598. | Zbl
,[6] An extension of Prohorov's theorem for transition probabilities with applications to infinite-dimensional lower closure problems. Rend. Circ. Mat. Palermo 34 (1985) 427-447. | Zbl
,[7] Lectures on Young measure theory and its applications in economics. Rend. Istit. Mat. Univ. Trieste 31 (2000) (Suppl. 1), 1-69, Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997). | Zbl
,[8] A version of the fundamental theorem for Young measures, PDEs and continuum models of phase transitions (Nice 1988), Springer, Berlin. Lect. Notes Phys. 344 (1989) 207-215. | Zbl
,[9] Singular perturbations of variational problems arising from a two-phase transition model. Appl. Math. Optim. 21 (1990) 289-314. | Zbl
,[10] Upper semicontinuous differential inclusions without convexity. Proc. Amer. Math. Soc. 106 (1989) 771-775. | Zbl
, and ,[11] Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contribution to Nonlinear Functional Analysis, in Proc. Sympos. Math. Res. Center, Univ. Wisconsin, Madison, 1971. Academic Press, New York (1971) 101-156. | Zbl
,[12] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam (1973), North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). | MR | Zbl
,[13] Analyse fonctionnelle - Théorie et applications. Masson, Paris (1983). | MR | Zbl
,[14] On some degenerate nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968), Providence, R.I., Amer. Math. Soc. (1970) 28-38. | Zbl
,[15] On a class of evolution equations without convexity. Nonlinear Anal. 28 (1997) 217-234. | Zbl
, , and ,[16] Convex analysis and measurable multifunctions. Springer, Berlin-New York (1977). | MR | Zbl
and ,[17] Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265-298. | Zbl
and ,[18] Semi-groups of nonlinear contractions and dissipative sets. J. Functional Anal. 3 (1969) 376-418. | Zbl
and ,[19] New problems on minimizing movements, Boundary Value Problems for PDE and Applications, C. Baiocchi and J.L. Lions, Eds., Masson (1993) 81-98. | Zbl
,[20] Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980) 180-187. | Zbl
, and ,[21] Probabilities and potential. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl
and ,[22] The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17 (electronic). | Zbl
, and ,[23] Perturbation theory for linear operators. Springer, Berlin (1976). | MR | Zbl
,[24] Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19 (1967) 493-507. | Zbl
,[25] Mordukhovich, Extremal points and the Euler equation in nonsmooth optimization problems. Dokl. Akad. Nauk BSSR 24 (1980) 684-687, 763. | Zbl
and .[26] Solutions for the two-phase Stefan problem with the Gibbs-Thomson Law for the melting temperature. Euro. J. Appl. Math. 1 (1990) 101-111. | Zbl
,[27] The Stefan Problem with the Gibbs-Thomson law. Preprint No. 591 Università di Pisa (1991) 1-21.
,[28] The Gibbs-Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal. 107 (1989) 71-83. | Zbl
,[29] Curves of maximal slope and parabolic variational inequalities on nonconvex constraints. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 281-330. | Numdam | Zbl
, and ,[30] A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137-177. | Zbl
, and ,[31] Gradient theory of phase transitions and minimal interface criterion. Arch. Rational Mech. Anal. 98 (1986) 123-142. | Zbl
,[32] Un esempio di -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. | Zbl
and ,[33] Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and conjugate mappings. Dokl. Akad. Nauk BSSR 28 (1984) 976-979. | Zbl
.[34] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | Zbl
, and ,[35] The Stefan problem with surface tension as the limit of a phase field model. Differential Equations 29 (1993) 395-404. | Zbl
and ,[36] Convex analysis. Princeton University Press, Princeton (1970). | MR | Zbl
,[37] Variational analysis. Springer-Verlag, Berlin (1998). | MR | Zbl
and ,[38] Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Sup., Pisa 2 (2003) 395-431.
and ,[39] Existence and approximation results for gradient flows. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (9) Mat. Appl. 15 (2004) 183-196.
and ,[40] Error analysis for implicit approximations to solutions to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68-87. | Zbl
,[41] Weak solutions and maximal regularity for abstract evolution inequalities. Adv. Math. Sci. Appl. 6 (1996) 377-418. | Zbl
,[42] Compactness properties for families of quasistationary solutions of some evolution equations. Trans. Amer. Math. Soc. 354 (2002) 3703-3722. | Zbl
,[43] The quasistationary phase field equations with Neumann boundary conditions. J. Differential Equations 162 (2000) 473-503. | Zbl
,[44] Lectures on geometric measure theory, in Proc. Centre for Math. Anal., Australian Nat. Univ. 3 (1983). | MR | Zbl
,[45] Young measures, Methods of nonconvex analysis (Varenna, 1989). Springer, Berlin (1990) 152-188. | Zbl
,[46] Differential models of hysteresis. Appl. Math. Sci. 111, Springer-Verlag, Berlin (1994). | MR | Zbl
,[47] Models of phase transitions. Progress in Nonlinear Differential Equations and Their Applications 28, Birkhäuser, Boston (1996). | MR | Zbl
,[48] Forward-backward parabolic equations and hysteresis. Calc. Var. Partial Differential Equations 15 (2002) 115-132. | Zbl
,Cited by Sources: