Dynamic boundary control games with networks of strings
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1789-1813.

Consider a star-shaped network of strings. Each string is governed by the wave equation. At each boundary node of the network there is a player that performs Dirichlet boundary control action and in this way influences the system state. At the central node, the states are coupled by algebraic conditions in such a way that the energy is conserved. We consider the corresponding antagonistic game where each player minimizes a certain quadratic objective function that is given by the sum of a control cost and a tracking term for the final state. We prove that under suitable assumptions a unique Nash equilibrium exists and give an explicit representation of the equilibrium strategies.

DOI : 10.1051/cocv/2017082
Classification : 49N70, 91A23
Mots clés : Vibrating string, boundary control, network, Nash equilibrium, game, pipeline network, gas transport
Gugat, Martin 1 ; Steffensen, Sonja 1

1
@article{COCV_2018__24_4_1789_0,
     author = {Gugat, Martin and Steffensen, Sonja},
     title = {Dynamic boundary control games with networks of strings},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1789--1813},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017082},
     zbl = {1415.49026},
     mrnumber = {3922441},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2017082/}
}
TY  - JOUR
AU  - Gugat, Martin
AU  - Steffensen, Sonja
TI  - Dynamic boundary control games with networks of strings
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1789
EP  - 1813
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2017082/
DO  - 10.1051/cocv/2017082
LA  - en
ID  - COCV_2018__24_4_1789_0
ER  - 
%0 Journal Article
%A Gugat, Martin
%A Steffensen, Sonja
%T Dynamic boundary control games with networks of strings
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1789-1813
%V 24
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2017082/
%R 10.1051/cocv/2017082
%G en
%F COCV_2018__24_4_1789_0
Gugat, Martin; Steffensen, Sonja. Dynamic boundary control games with networks of strings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1789-1813. doi : 10.1051/cocv/2017082. http://www.numdam.org/articles/10.1051/cocv/2017082/

[1] M.K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1 (2006) 295–314. | DOI | MR | Zbl

[2] A. Bressan, Bifurcation analysis of a non-cooperative differential game with one weak player. J. Differ. Equ. 248 (2010) 1297–1314. | DOI | MR | Zbl

[3] A. Bressan and K. Han, Existence of optima and equilibria for traffic flow on networks. Netw. Heterog. Media 8 (2013) 627–648. | DOI | MR | Zbl

[4] R. Dager, E. Zuazua, Wave propagation, in Observation and Control in 1-d Flexible Multi-Structures. Vol. 50 of Mathématiques et Applications. Springer-Verlag, Berlin, Heidelberg (2006). | DOI | MR | Zbl

[5] E.J. Dockner, S. Jorgensen, N. Van Long and G. Sorger, Differential Games in Economics and Management Science. Cambridge University Press (2000). | DOI | MR | Zbl

[6] S. Ervedoza, E. Zuazua, The Wave Equation: Control and Numerics. Vol. 2048 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg (2012) 245–339. | DOI | MR

[7] R. Dager, Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim. 43 (2004) 590–623. | DOI | MR | Zbl

[8] T.L. Friesz, Dynamic Optimization and Differential Games. Springer (2010). | DOI | Zbl

[9] P. Frihauf, M. Krstic, T. Basar, Nash equilibrium seeking in noncooperative games. IEEE Trans. Autom. Control 57 (2012) 1192–1207. | DOI | MR | Zbl

[10] M. Gugat, G. Leugering and G. Sklyar, Lp-optimal boundary control for the wave equation. SIAM J. Control Optim. 44 (2005) 49–74. | DOI | MR | Zbl

[11] M. Gugat, Penalty techniques for state constrained optimal control problems with the wave equation. SIAM J. Control Optim. 48 (2009) 3026–3051. | DOI | MR | Zbl

[12] M. Gugat and M. Sigalotti, Stars of vibrating strings: switching boundary feedback stabilization. Netw. Heterog. Media 5 (2010) 299–314. | DOI | MR | Zbl

[13] M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inf. 27 (2010) 189–203. | DOI | MR | Zbl

[14] M. Gugat, M. Herty, V. Schleper, Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci. 34 (2011) 745–757. | DOI | MR | Zbl

[15] M.R. Hestenes, Calculus of Variations and Optimal Control Theory. Wiley & Sons, Inc., New York (1980). | MR | Zbl

[16] M. Jungers, E. Trélat and H. Abou-Kandil, Min-max and min-min Stackelberg strategies with closed-loop information structure. J. Dyn. Control Syst. 17 (2011) 387–425. | DOI | MR | Zbl

[17] M. Knauer, Fast and save container cranes as bilevel optimal control problems. Special Issue: Modelling of fuel cells and chemical engineering applications. Math. Comp. Model. Dyn. Syst.: Methods, Tools Appl. Eng. Related Sci. 18 (2012) 465–486. | DOI | MR | Zbl

[18] K. Kunisch, P. Trautmann and B. Vexler, Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54 (2016) 1212–1244. | DOI | MR | Zbl

[19] L.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, 1st ed. Vol. 170 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin (1971). | MR | Zbl

[20] D.G. Luenberger, Optimization by Vector Space Methods. John Wiley & Sons (1997). | Zbl

[21] J. Nash, Non-cooperative games. Ann. Math. 54 (1951) 286–295. | DOI | MR | Zbl

[22] P. Nie, L. Chen and M. Fukushima, Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. Eur. J. Oper. Res. 169 (2006) 310–328. | DOI | MR | Zbl

[23] P. Nie, Discrete time dynamic multi-leader-follower games with feedback perfect information. Int. J. Syst. Sci. 38 (2007) 247–255. | DOI | MR | Zbl

[24] D.F. Novella Rodriguez, E. Witrant and O. Sename, Control-oriented modeling of fluid networks: a time-delay approach, in Recent Results on Nonlinear Delay Control Systems. Springer International Publishing, Switzerland (2016). | DOI | MR | Zbl

[25] E.J.P.G. Schmidt, On the modelling and exact controllability of networks of vibrating strings. SIAM J. Control Optim. 30 (1992) 229–245. | DOI | MR | Zbl

[26] L. Schwartz, Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1998). | Zbl

[27] J.L. Troutman, Variational Calculus and Optimal Control. Springer, New York (1996). | DOI | MR | Zbl

Cité par Sources :