A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance
ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 1, pp. 88-111.

We determine the parametric hull of a given volume which minimizes the total water resistance for a given speed of the ship. The total resistance is the sum of Michell’s wave resistance and of the viscous resistance, approximated by assuming a constant viscous drag coefficient. We prove that the optimized hull exists, is unique, symmetric, smooth and that it depends continuously on the speed. Numerical simulations show the efficiency of the approach, and complete the theoretical results.

Received:
DOI: 10.1051/cocv/2014067
Classification: 49J20, 76B75, 76M30
Keywords: Quadratic programming, obstacle problem, Sobolev space, Uzawa algorithm, parametric shape optimization
Dambrine, Julien 1; Pierre, Morgan 1; Rousseaux, Germain 2

1 Universitéde Poitiers, Laboratoire de Mathématiques et Applications UMR CNRS 7348, Téléport 2 – BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil, France
2 Institut Pprime UPR 3346, Département Fluides, Thermique, Combustion, CNRS – Université de Poitiers – ENSMA, SP2MI – Téléport 2, 11 Boulevard Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil cedex, France
@article{COCV_2016__22_1_88_0,
     author = {Dambrine, Julien and Pierre, Morgan and Rousseaux, Germain},
     title = {A theoretical and numerical determination of optimal ship forms based on {Michell{\textquoteright}s} wave resistance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {88--111},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2014067},
     zbl = {1335.49071},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2014067/}
}
TY  - JOUR
AU  - Dambrine, Julien
AU  - Pierre, Morgan
AU  - Rousseaux, Germain
TI  - A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 88
EP  - 111
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2014067/
DO  - 10.1051/cocv/2014067
LA  - en
ID  - COCV_2016__22_1_88_0
ER  - 
%0 Journal Article
%A Dambrine, Julien
%A Pierre, Morgan
%A Rousseaux, Germain
%T A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 88-111
%V 22
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2014067/
%R 10.1051/cocv/2014067
%G en
%F COCV_2016__22_1_88_0
Dambrine, Julien; Pierre, Morgan; Rousseaux, Germain. A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 1, pp. 88-111. doi : 10.1051/cocv/2014067. http://www.numdam.org/articles/10.1051/cocv/2014067/

R.A. Adams, Sobolev Spaces. Pure Appl. Math. Academic Press, New York-London (1975), Vol. 65. | Zbl

G. Allaire, Conception Optimale de Structures. Math. Appl. Vol. 58. Springer-Verlag, Berlin (2007). | Zbl

R. Bellman and K.L. Cooke, Differential-Difference Equations. Academic Press, New York (1963). | Zbl

A. Braides, Γ-convergence for beginners. Vol. 22 of Oxford Lect. Series Math. Appl. Oxford University Press, Oxford (2002). | Zbl

H. Brezis, Analyse fonctionnelle. Théorie et applications. Masson, Paris (1983). | Zbl

G. Buttazzo, A survey on the Newton problem of optimal profiles, in Variational analysis and aerospace engineering. Edited by G. Buttazzo and A. Frediani. Vol. 33 of Springer Optim. Appl. Springer, New York (2009) 33–48. | Zbl

P.G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1982). | Zbl

A. Sh. Gotman, Study of Michell’s integral and influence of viscosity and ship hull form on wave resistance. Ocean. Eng. Internat. 6 (2002) 74–115.

P. Grisvard, Elliptic problems in nonsmooth domains. Vol. 24 of Monogr. Stud. Math. Pitman, Boston, MA (1985). | Zbl

R. Guilloton, Further notes on the theoretical calculation of wave profiles, and of the resistance of hulls. Trans. Institution of Naval Architects 88 (1946).

T.H. Havelock, The theory of wave resistance. Proc. R. Soc. London A 132 (1932). | JFM

M. Higuchi and H. Maruo, Fundamental studies on ship hull form design by means of non-linear programming. First report: application of Michell’s theory. J. Soc. Naval Architects of Japan 145 (1979).

K. Hochkirch and V. Bertram, Hull optimization for fuel efficiency. Past, present and future. 13th International Conference on Computer Applications and Information Technology in the Maritime Industries (2012).

C.-C. Hsiung, Optimal ship forms for minimum wave resistance. J. Ship Res. 25 (1981).

C.-C. Hsiung and D. Shenyyan, Optimal ship forms for minimum total resistance. J. Ship Res. 28 (1984) 163–172. | DOI

T. Inui, Investigation of Bulbous Bow Design for “Mariner” Cargo Ship. Final Report, University of Michigan, Ann Arbor (1964).

Lord Kelvin, On ship waves. Proc. Inst. Mech. Eng. 38 (1887) 409–434. | DOI

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Vol. 88 of Pure Appl. Math. Academic Press, Inc., New York-London (1980). | Zbl

M. Kirsch, Shallow water and channel effects on wave resistance. J. Ship Res. 10 (1966) 164–181. | DOI

A.A. Kostyukov, Theory of Ship Waves and Wave Resistance. Effective Communications Inc., Iowa City, Iowa (1968).

Z. Lian-En, Optimal ship forms for minimal total resistance in shallow water. Schriftenreihe Schiffbau 445 (1984) 1–60.

B. Lucquin, Équations aux dérivées partielles et leurs approximations. Ellipses, Paris (2004). | Zbl

H. Maruo and M. Bessho, Ships of minimum wave resistance. J. Zosen Kiokai 114 (1963) 9–23. | DOI

J.P. Michalski, A. Pramila and S. Virtanen, Creation of Ship Body Form with Minimum Theoretical Resistance Using Finite Element Method, in Numerical Techniques for Engineering Analysis and Design. Springer, Netherlands (1987) 263–270.

J.H. Michell, The wave resistance of a ship. Philosophical Magazine, London, England 45 (1898) 106–123. | JFM

F.C. Michelsen, Wave resistance solution of Michell’s integral for polynomial ship forms. Doctoral Dissertation, The University of Michigan (1960).

B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Second edition. Numer. Math. Comput. Sci. Oxford University Press, Oxford (2010). | Zbl

A.F. Molland, S.R. Turnock and D.A. Hudson, Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power. Cambridge University Press, Cambridge (2011). | Zbl

D.-W. Park and H.-J. Choi, Hydrodynamic Hull form design using an optimization technique. Int. J. Ocean Syst. Engrg. 3 (2013) 1–9. | DOI

G.E. Pavlenko, Ship of minimum resistance. Trans. VNITOSS II (1937).

S. Percival, D. Hendrix and F. Noblesse, Hydrodynamic optimization of ship hull forms. Appl. Ocean Res. 23 (2001) 337–355. | DOI

A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Vol. 136 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2012). | Zbl

G.K. Saha, K. Suzuki and H. Kai, Hydrodynamic optimization of ship hull forms in shallow water. J. Mar. Sci. Technol. 9 (2004) 51–62.

L.N. Sretensky, On a problem of the minimum in ship theory. Rep. USSR Acad. Sci. 3 (1935).

L.N. Sretensky, On the wave-making resistance of a ship moving along in a canal. Philos. Mag. (1936) 1005–1013. | JFM

Md. S. Tarafder, G.M. Khalil and S.M.I. Mahmud, Computation of wave-making resistance of Wigley hull form using Michell’s integral. The Institution of Engineers, Malaysia 68 (2007) 33–40.

G. Weinblum, Ein Verfahren zur Auswertung des Wellenwiderstandes verinfachter Schiffsformen. Schiffstechnik 3 (1956) 18.

B.J. Zhang, K. Ma and Z.S. Ji, The optimization of the hull form with the minimum wave making resistance based on rankine source method. J. Hydrodynamics Ser. B 21 (2009) 277–284. | DOI

Cited by Sources: