The polarization in a ferroelectric thin film: local and nonlocal limit problems
ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, pp. 657-667.

In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.

DOI: 10.1051/cocv/2012026
Classification: 35Q61, 78A25
Keywords: electric polarization, thin film, nonlocal problems
@article{COCV_2013__19_3_657_0,
     author = {Gaudiello, Antonio and Hamdache, Kamel},
     title = {The polarization in a ferroelectric thin film: local and nonlocal limit problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {657--667},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {3},
     year = {2013},
     doi = {10.1051/cocv/2012026},
     mrnumber = {3092355},
     zbl = {1291.35384},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2012026/}
}
TY  - JOUR
AU  - Gaudiello, Antonio
AU  - Hamdache, Kamel
TI  - The polarization in a ferroelectric thin film: local and nonlocal limit problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 657
EP  - 667
VL  - 19
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2012026/
DO  - 10.1051/cocv/2012026
LA  - en
ID  - COCV_2013__19_3_657_0
ER  - 
%0 Journal Article
%A Gaudiello, Antonio
%A Hamdache, Kamel
%T The polarization in a ferroelectric thin film: local and nonlocal limit problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 657-667
%V 19
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2012026/
%R 10.1051/cocv/2012026
%G en
%F COCV_2013__19_3_657_0
Gaudiello, Antonio; Hamdache, Kamel. The polarization in a ferroelectric thin film: local and nonlocal limit problems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, pp. 657-667. doi : 10.1051/cocv/2012026. http://www.numdam.org/articles/10.1051/cocv/2012026/

[1] F. Alouges and S. Labbé, Convergence of a ferromagnetic film model. C. R. Math. Acad. Sci. Paris 344 (2007) 77-82. | MR | Zbl

[2] H. Ammari, L. Halpern and K. Hamdache, Asymptotic behavior of thin ferromagnetic films. Asymptot. Anal. 24 (2000) 277-294. | MR | Zbl

[3] G. Carbou, Thin Layers in Micromagnetism. Math. Model. Methods Appl. Sci. 11 (2001) 1529-1546. | MR | Zbl

[4] P. Chandra and P.B. Littlewood, A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective, edited by K. Rabe, C.H. Ahn and J.-M. Triscone. Topics Appl. Phys. 105 (2007) 69-116.

[5] P.G. Ciarlet and P. Destuynder, A Justification of the two-dimensional linear plate model. J. Méca. 18 (1979) 315-344. | MR | Zbl

[6] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627-649. | Numdam | MR | Zbl

[7] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR | Zbl

[8] A. Desimone, R.V. Kohn, S. Muller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408-1460. | MR | Zbl

[9] A. Gaudiello and R. Hadiji, Junction of ferromagnetic thin films. Calc. Var. Partial Differ. Equ. 39 (2010) 593-619. | MR | Zbl

[10] G. Gioia and R.D. James, Micromagnetism of very thin films. Proc. of R. London A 453 (1997) 213-223.

[11] R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178 (2005) 227-245. | MR | Zbl

[12] R.C. Smith, Smart material systems. model development, in Front. Appl. Math. Vol. 32. SIAM (2005). | MR | Zbl

[13] Y. Su and C.M. Landis, Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55 (2007) 280-305. | MR

[14] W. Zhang and K. Bhattacharya, A computational model of ferroelectric domains. Part I. Model formulation and domain switching. Acta Mater. 53 (2005) 185-198.

Cited by Sources: