We study the partial differential equation max{Lu - f, H(Du)} = 0 where u is the unknown function, L is a second-order elliptic operator, f is a given smooth function and H is a convex function. This is a model equation for Hamilton-Jacobi-Bellman equations arising in stochastic singular control. We establish the existence of a unique viscosity solution of the Dirichlet problem that has a Hölder continuous gradient. We also show that if H is uniformly convex, the gradient of this solution is Lipschitz continuous.
Classification : 35J15, 49L25, 35R35, 49L20
Mots clés : HJB equation, gradient constraint, free boundary problem, singular control, penalty method, viscosity solutions
@article{COCV_2013__19_1_112_0, author = {Hynd, Ryan}, title = {Analysis of {Hamilton-Jacobi-Bellman} equations arising in stochastic singular control}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {112--128}, publisher = {EDP-Sciences}, volume = {19}, number = {1}, year = {2013}, doi = {10.1051/cocv/2012001}, zbl = {1259.49043}, mrnumber = {3023063}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2012001/} }
TY - JOUR AU - Hynd, Ryan TI - Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 DA - 2013/// SP - 112 EP - 128 VL - 19 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2012001/ UR - https://zbmath.org/?q=an%3A1259.49043 UR - https://www.ams.org/mathscinet-getitem?mr=3023063 UR - https://doi.org/10.1051/cocv/2012001 DO - 10.1051/cocv/2012001 LA - en ID - COCV_2013__19_1_112_0 ER -
Hynd, Ryan. Analysis of Hamilton-Jacobi-Bellman equations arising in stochastic singular control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 1, pp. 112-128. doi : 10.1051/cocv/2012001. http://www.numdam.org/articles/10.1051/cocv/2012001/
[1] Viscosity solutions : a primer. Viscosity solutions and applications, Lecture Notes in Math. 1660. Springer, Berlin (1997) 1-43. | MR 1462699 | Zbl 0901.49026
,[2] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1-67. | MR 1118699 | Zbl 0755.35015
, and ,[3] A second-order elliptic equation with gradient constraint. Comm. Partial Differential Equations 4 (1979) 555-572. | MR 529814 | Zbl 0448.35036
,[4] Partial differential equations. Graduate Studies in Mathematics 19. American Mathematical Society, Providence, RI (1998). | MR 1625845 | Zbl 0902.35002
,[5] Controlled Markov processes and viscosity solutions, Stochastic Modeling and Applied Probability 25, 2nd edition. Springer, New York (2006). | MR 2179357 | Zbl 1105.60005
and ,[6] Elliptic Partial Differential Equations of Second Order. Springer (1998). | Zbl 1042.35002
and ,[7] Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differential Equations 8 (1983) 317-346. | MR 693645 | Zbl 0538.35012
and ,[8] Variational analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317. Springer-Verlag, Berlin (1998). | MR 1491362 | Zbl 0888.49001
and ,[9] A free boundary problem related to singular stochastic control, Applied stochastic analysis (London, 1989), Stochastics Monogr. 5. Gordon and Breach, New York (1991) 265-301. | MR 1108426 | Zbl 0733.93083
and ,[10] Regularity of the value function for a two-dimensional singular stochastic control problem. SIAM J. Control Optim. 27 (1989) 876-907. | MR 1001925 | Zbl 0685.93076
and ,[11] The C1,1-character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differential Equations 6 (1981) 361-371. | MR 607553 | Zbl 0458.35035
,Cité par Sources :