This article considers the linear 1-d Schrödinger equation in (0,π) perturbed by a vanishing viscosity term depending on a small parameter ε > 0. We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls vε as ε goes to zero. It is shown that, for any time T sufficiently large but independent of ε and for each initial datum in H-1(0,π), there exists a uniformly bounded family of controls (vε)ε in L2(0, T) acting on the extremity x = π. Any weak limit of this family is a control for the Schrödinger equation.
Classification : 93B05, 30E05, 35Q41
Mots clés : null-controllability, Schrödinger equation, complex Ginzburg-Landau equation, moment problem, biorthogonal, vanishing viscosity
@article{COCV_2012__18_1_277_0, author = {Micu, Sorin and Roven\c{t}a, Ionel}, title = {Uniform controllability of the linear one dimensional {Schr\"odinger} equation with vanishing viscosity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {277--293}, publisher = {EDP-Sciences}, volume = {18}, number = {1}, year = {2012}, doi = {10.1051/cocv/2010055}, zbl = {1242.93019}, mrnumber = {2887936}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2010055/} }
TY - JOUR AU - Micu, Sorin AU - Rovenţa, Ionel TI - Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 DA - 2012/// SP - 277 EP - 293 VL - 18 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2010055/ UR - https://zbmath.org/?q=an%3A1242.93019 UR - https://www.ams.org/mathscinet-getitem?mr=2887936 UR - https://doi.org/10.1051/cocv/2010055 DO - 10.1051/cocv/2010055 LA - en ID - COCV_2012__18_1_277_0 ER -
Micu, Sorin; Rovenţa, Ionel. Uniform controllability of the linear one dimensional Schrödinger equation with vanishing viscosity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 1, pp. 277-293. doi : 10.1051/cocv/2010055. http://www.numdam.org/articles/10.1051/cocv/2010055/
[1] Boundary control of the linearized Ginzburg-Landau model of vortex shedding. SIAM J. Control Optim. 43 (2005) 1953-1971. | MR 2177789 | Zbl 1082.93016
, and ,[2] Families of exponentials. The method of moments in controllability problems for distributed parameter systems. Cambridge University Press (1995). | MR 1366650 | Zbl 0866.93001
and ,[3] Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Commun. Pure Appl. Math. XXXII (1979) 555-587. | MR 528632 | Zbl 0394.93041
and ,[4] On the possibility of soft and hard turbulence in the complex Ginzburg Landau equation. Physica D 44 (1990) 421-444. | MR 1076337 | Zbl 0702.76061
, , , and ,[5] Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 1537-1554. | MR 1955903 | Zbl 1023.35091
and ,[6] Control and nonlinearity, Mathematical Surveys and Monographs 136. Am. Math. Soc., Providence (2007). | MR 2302744 | Zbl 1140.93002
,[7] Singular optimal control : a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237-257. | MR 2176274 | Zbl 1078.93009
and ,[8] Convergence of approximate solutions to conservation laws. Arch. Ration. Mech. Anal. 82 (1983) 27-70. | MR 684413 | Zbl 0519.35054
,[9] A weighted identity for partial differential operators of second order and its applications. C. R. Acad. Sci. Paris, Sér. I 342 (2006) 579-584. | MR 2217919
,[10] Null controllability for the parabolic equation with a complex principal part. J. Funct. Anal. 257 (2009) 1333-1354. | MR 2541271 | Zbl 1178.35099
,[11] Controllability of Evolution Equations, Lect. Notes Ser. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR 1406566 | Zbl 0862.49004
and ,[12] A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852-868. | MR 2558179 | Zbl 1180.93015
,[13] Dispersive Properties of Numerical Schemes for Nonlinear Schrödinger Equations, in Foundations of Computational Mathematics, Santander 2005, London Math. Soc. Lect. Notes 331, L.M. Pardo, A. Pinkus, E. Suli and M.J. Todd Eds., Cambridge University Press (2006) 181-207. | MR 2277106 | Zbl 1106.65321
and ,[14] Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47 (2009) 1366-1390. | MR 2485456 | Zbl 1192.65127
and ,[15] A note on Fourier transform. J. London Math. Soc. 9 (1934) 29-32. | MR 1574706 | Zbl 0008.30601
,[16] Some trigonometric inequalities with applications to the theory of series. Math. Zeits. 41 (1936) 367-379. | MR 1545625 | Zbl 0014.21503
,[17] Pseudo-Périodicité et Séries de Fourier Lacunaires. Ann. Scient. Ec. Norm. Sup. 37 (1962) 93-95. | Numdam | MR 154060 | Zbl 0105.28601
,[18] Fourier Series in Control Theory. Springer-Verlag, New York (2005). | MR 2114325 | Zbl 1094.49002
and ,[19] Uniform controllability of scalar conservation laws in the vanishing viscosity limit. Preprint (2010). | Zbl 1251.93033
,[20] Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl 0838.35013
,[21] The complex Ginzburg Landau equation as a model problem, in Dynamical Systems and Probabilistic Methods in Partial Differential Equations, in Lect. Appl. Math. 31, Am. Math. Soc., Providence (1996) 141-190. | MR 1363028 | Zbl 0845.35003
and ,[22] Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pures Appl. 79 (2000) 741-808. | MR 1782102 | Zbl 1079.35017
, and ,[23] Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24-34. | MR 1255957 | Zbl 0795.93018
,[24] Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Probl. 24 (2008) 150-170. | MR 2384776 | Zbl 1153.35407
, and ,[25] A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66 (2010) 139-160. | MR 2648782 | Zbl 1196.35129
and ,[26] Fourier Transforms in Complex Domains, AMS Colloq. Publ. 19. Am. Math. Soc., New York (1934). | MR 1451142 | Zbl 0011.01601
and ,[27] Completeness of sets of complex exponentials. Adv. Math. 24 (1977) 1-62. | MR 447542 | Zbl 0358.42007
,[28] Null controllability of the complex Ginzburg Landau equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 649-673. | Numdam | MR 2504047 | Zbl 1170.35095
and ,[29] Shock wave dynamics in a discrete nonlinear Schrödinger equation with internal losses. Phys. Rev. 62 (2000) 8651-8656. | MR 1804633
, and ,[30] Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Springer, Basel (2009). | MR 2502023 | Zbl 1188.93002
and ,[31] An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980). | MR 591684 | Zbl 0981.42001
,[32] Mathematical Control Theory : An Introduction. Birkhäuser, Basel (1992). | MR 1193920 | Zbl 1071.93500
,[33] A remark on null exact controllability of the heat equation. SIAM J. Control Optim. 40 (2001) 39-53. | MR 1855304 | Zbl 1002.93025
,Cité par Sources :