@article{ASENS_2001_4_34_5_631_0, author = {Evens, Sam and Lu, Jiang-Hua}, title = {On the variety of lagrangian subalgebras, {I}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {631--668}, publisher = {Elsevier}, volume = {Ser. 4, 34}, number = {5}, year = {2001}, doi = {10.1016/s0012-9593(01)01072-2}, mrnumber = {1862022}, zbl = {1098.17006}, language = {en}, url = {http://www.numdam.org/articles/10.1016/s0012-9593(01)01072-2/} }
TY - JOUR AU - Evens, Sam AU - Lu, Jiang-Hua TI - On the variety of lagrangian subalgebras, I JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 631 EP - 668 VL - 34 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/s0012-9593(01)01072-2/ DO - 10.1016/s0012-9593(01)01072-2 LA - en ID - ASENS_2001_4_34_5_631_0 ER -
%0 Journal Article %A Evens, Sam %A Lu, Jiang-Hua %T On the variety of lagrangian subalgebras, I %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 631-668 %V 34 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/s0012-9593(01)01072-2/ %R 10.1016/s0012-9593(01)01072-2 %G en %F ASENS_2001_4_34_5_631_0
Evens, Sam; Lu, Jiang-Hua. On the variety of lagrangian subalgebras, I. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 5, pp. 631-668. doi : 10.1016/s0012-9593(01)01072-2. http://www.numdam.org/articles/10.1016/s0012-9593(01)01072-2/
[1] The Langlands Classification and Irreducible Characters for Real Reductive Groups, Birkhäuser, 1992. | MR | Zbl
, , ,[2] Geometry of Algebraic Curves, Vol. 1, Springer-Verlag, 1985. | MR | Zbl
, , , ,[3] Les sous-groupes fermes de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949) 200-221. | MR | Zbl
, ,[4] Complete symmetric varieties, in: Invariant Theory (Montecatini, 1982), Lect. Notes in Math., 996, Springer, Berlin, New York, 1983, pp. 1-44. | MR | Zbl
, ,[5] Delorme P., Classification des triples de Manin pour les algèbres de Lie réductives complexes, math.QA/0003123.
[6] On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys. 95 (2) (1993) 226-227. | Zbl
,[7] Poisson harmonic forms, Kostant harmonic forms, and the S1-equivariant cohomology of K/T, Adv. Math. 142 (1999) 171-220. | MR | Zbl
, ,[8] Geometry and classification of solutions of the classical dynamical Yang-Baxter equation, Comm. Math. Phys. 192 (1998) 177-220. | Zbl
, ,[9] Algebraic Geometry, Springer-Verlag, 1977. | MR | Zbl
,[10] Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978. | MR | Zbl
,[11] Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972. | MR | Zbl
,[12] The classification of Poisson homogeneous spaces of compact Poisson Lie groups, Mathematical Physics, Analysis, and Geometry 3 (3/4) (1996) 274-289, (in Russian).
,[13] A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups, Banach Center Publ., 51, Polish Academy of Sciences, Warsaw, 2000. | Zbl
,[14] Algebras of Functions on Quantum Groups, Part I, Mathematical Surveys and Monographs, 56, American Mathematical Society, 1998. | MR | Zbl
, ,[15] Lie algebra cohomology and generalized Schubert cells, Ann. of Math. 77 (1) (1963) 72-144. | MR | Zbl
,[16] The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. Math. 62 (3) (1986) 187-237. | Zbl
, ,[17] Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990) 501-526. | MR | Zbl
, ,[18] Multiplicative and affine Poisson structures on Lie groups, PhD thesis, University of California, Berkeley, 1990.
,[19] Poisson homogeneous spaces and Lie algebroids associated to Poisson actions, Duke Math. J. 86 (2) (1997) 261-304. | MR | Zbl
,[20] Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat Poisson structure on G/B, Trans. Groups 4 (4) (1999) 355-374. | MR | Zbl
,[21] Classical dynamical r-matrices and homogeneous Poisson structures on G/H and on K/T, Comm. Math. Phys. 212 (2000) 337-370. | MR | Zbl
,[22] Structure of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras III, Encyclopaedia of Mathematical Sciences, 41, Springer-Verlag, Berlin, 1994. | MR | Zbl
, (Eds.),[23] Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980) 1-81. | EuDML | MR | Zbl
, ,[24] Panov A., Manin triples of real simple Lie algebras, part 1, available as math.QA/9904156.
[25] Panov A., Manin triples of real simple Lie algebras, part 2, available as math.QA/9905028.
[26] Clifford Algebras and the Classical Groups, Cambridge University Press, 1995. | MR | Zbl
,[27] The structure of semi-simple symmetric spaces, Canadian Math. J. 31 (1979) 157-180.
,[28] On classification of dynamical r-matrices, Math. Res. Lett. 5 (1998) 13-31. | MR | Zbl
,[29] Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser, 1984. | MR | Zbl
,[30] Real Algebraic Surfaces, Lect. Notes in Math., 1392, Springer-Verlag, 1989. | MR | Zbl
,Cited by Sources: