Index of transversally elliptic D-modules
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 2, pp. 223-265.
@article{ASENS_2001_4_34_2_223_0,
     author = {Guillermou, St\'ephane},
     title = {Index of transversally elliptic $D$-modules},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {223--265},
     publisher = {Elsevier},
     volume = {Ser. 4, 34},
     number = {2},
     year = {2001},
     doi = {10.1016/s0012-9593(00)01060-0},
     zbl = {1011.32004},
     mrnumber = {1841878},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)01060-0/}
}
TY  - JOUR
AU  - Guillermou, Stéphane
TI  - Index of transversally elliptic $D$-modules
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
DA  - 2001///
SP  - 223
EP  - 265
VL  - Ser. 4, 34
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(00)01060-0/
UR  - https://zbmath.org/?q=an%3A1011.32004
UR  - https://www.ams.org/mathscinet-getitem?mr=1841878
UR  - https://doi.org/10.1016/s0012-9593(00)01060-0
DO  - 10.1016/s0012-9593(00)01060-0
LA  - en
ID  - ASENS_2001_4_34_2_223_0
ER  - 
%0 Journal Article
%A Guillermou, Stéphane
%T Index of transversally elliptic $D$-modules
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 223-265
%V Ser. 4, 34
%N 2
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(00)01060-0
%R 10.1016/s0012-9593(00)01060-0
%G en
%F ASENS_2001_4_34_2_223_0
Guillermou, Stéphane. Index of transversally elliptic $D$-modules. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 2, pp. 223-265. doi : 10.1016/s0012-9593(00)01060-0. http://www.numdam.org/articles/10.1016/s0012-9593(00)01060-0/

[1] Atiyah M.F, Elliptic Operators and Compact Groups, Lect. Notes in Math., 401, Springer-Verlag, 1974. | MR | Zbl

[2] Atiyah M.F, Bott R, A Lefschetz fixed point formula for elliptic complexes: I, Ann. Math. 86 (1967) 374-407. | MR | Zbl

[3] Atiyah M.F, Bott R, A Lefschetz fixed point formula for elliptic complexes: II, Ann. Math. 88 (1968) 451-491. | MR | Zbl

[4] Beilinson A.A, Bernstein J, Deligne P, Faisceaux pervers, Astérisque, 100, 1982. | MR | Zbl

[5] Berline N, Vergne M, The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math. 124 (1996) 11-49. | MR | Zbl

[6] Brylinski J.L, Differential Operators on the Flag Varieties, Astérisque, 87-88, 1981. | Zbl

[7] D'Agnolo A, Schapira P, Radon-Penrose transform for D-modules, J. Funct. Anal. 139 (1996) 349-382. | Zbl

[8] Duflo M, Heckman G, Vergne M, Projection d'orbites, formule de Kirillov et formule de Blattner, in: Harmonic Analysis on Lie Groups and Symmetric Spaces, Mem. Soc. Math. France, 15, 1984, pp. 12-65. | EuDML | Numdam | MR | Zbl

[9] Grothendieck A, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956) 319-384. | EuDML | Numdam | MR | Zbl

[10] Grothendieck A, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). | MR | Zbl

[11] Guillermou S, Lefschetz class of elliptic pairs, Duke Math. J. 85 (1996) 273-314. | MR | Zbl

[12] Harish-Chandra , Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965) 457-508. | MR | Zbl

[13] Hotta R, Kashiwara M, The invariant holonomic system on a semisimple Lie algebra, Invent. Math. 75 (1984) 327-358. | MR | Zbl

[14] Kashiwara M, Character, character cycle, fixed point theorem and group representations, in: Representations of Lie Groups, Adv. Stud. Pure Math., 14, 1988, pp. 369-378. | MR | Zbl

[15] Kashiwara M, D-modules and representation theory of Lie groups, Ann. Inst. Fourier 43 (1993) 1597-1618. | Numdam | MR | Zbl

[16] Kashiwara M, Schapira P, Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, 1990. | MR | Zbl

[17] Kashiwara M, Schapira P, Moderate and formal cohomology associated with constructible sheaves, Mem. Soc. Math. France (N.S.), 64, 1996. | Numdam | MR | Zbl

[18] Kashiwara M, Schmid W, Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, in: Lie Theory and Geometry, Prog. Math., 123, 1994, pp. 457-488. | MR | Zbl

[19] Mirkovic I, Uzawa T, Vilonen K, Matsuki correspondence for sheaves, Invent. Math. 109 (1992) 231-245. | MR | Zbl

[20] Ochiai H, Characters and character cycles, J. Math. Soc. Japan 45 (1993) 583-598. | MR | Zbl

[21] Sato M, Kawai T, Kashiwara M, Microfunctions and pseudo-differential equations, in: Hyperfunctions Pseudo-Differential Equations, Proc. Conf. Katata 1971, Lect. Notes in Math., 287, 1973, pp. 263-529. | MR | Zbl

[22] Schapira P, Schneiders J.-P, Index Theorem for Elliptic Pairs, Astérisque, 224, 1994. | Zbl

[23] Schmid W, Vilonen K, Characters, fixed points and Osborne's conjecture, in: Representation Theory of Groups and Algebras, Contemp. Math., 145, 1993, pp. 287-303. | MR | Zbl

[24] Schneiders J.-P, Quasi-Abelian Categories and Sheaves, Mem. Soc. Math. France (N.S.), 76, 1999. | Numdam | MR | Zbl

[25] Trèves F, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967. | MR | Zbl

Cited by Sources: