Manifolds with quadratic curvature decay and slow volume growth
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 2, pp. 275-290.
@article{ASENS_2000_4_33_2_275_0,
     author = {Lott, John and Shen, Zhongmin},
     title = {Manifolds with quadratic curvature decay and slow volume growth},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {275--290},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {2},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00110-5},
     zbl = {0996.53026},
     mrnumber = {2002e:53049},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/s0012-9593(00)00110-5/}
}
TY  - JOUR
AU  - Lott, John
AU  - Shen, Zhongmin
TI  - Manifolds with quadratic curvature decay and slow volume growth
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
DA  - 2000///
SP  - 275
EP  - 290
VL  - Ser. 4, 33
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/s0012-9593(00)00110-5/
UR  - https://zbmath.org/?q=an%3A0996.53026
UR  - https://www.ams.org/mathscinet-getitem?mr=2002e:53049
UR  - https://doi.org/10.1016/s0012-9593(00)00110-5
DO  - 10.1016/s0012-9593(00)00110-5
LA  - en
ID  - ASENS_2000_4_33_2_275_0
ER  - 
%0 Journal Article
%A Lott, John
%A Shen, Zhongmin
%T Manifolds with quadratic curvature decay and slow volume growth
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 275-290
%V Ser. 4, 33
%N 2
%I Elsevier
%U https://doi.org/10.1016/s0012-9593(00)00110-5
%R 10.1016/s0012-9593(00)00110-5
%G en
%F ASENS_2000_4_33_2_275_0
Lott, John; Shen, Zhongmin. Manifolds with quadratic curvature decay and slow volume growth. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 33 (2000) no. 2, pp. 275-290. doi : 10.1016/s0012-9593(00)00110-5. http://www.numdam.org/articles/10.1016/s0012-9593(00)00110-5/

[1] Abresch U., Lower curvature bounds, Toponogov's theorem and bounded topology I, Ann. Sci. Ec. Norm. Sup. 18 (1985) 651-670. | Numdam | MR | Zbl

[2] Bonahon F., Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71-158. | MR | Zbl

[3] Cheeger J., Critical points of distance functions and applications to geometry, in : Geometric Topology : Recent Developments, Lecture Notes in Math., Vol. 1504, Springer, New York, 1991, pp. 1-38. | MR | Zbl

[4] Cheeger J., Gromov M., On the characteristic numbers of complete manifolds of bounded curvature and finite volume, in : Differential Geometry and Complex Analysis, Springer, Berlin, 1985, pp. 115-154. | MR | Zbl

[5] Cheeger J., Gromov M., Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. | MR | Zbl

[6] Cheeger J., Gromov M., Chopping Riemannian manifolds, in : Differential Geometry, Pitman Monographs Surveys Pure Appl. Math., Vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85-94. | MR | Zbl

[7] Cheeger J., Gromov M., Taylor M., Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53. | MR | Zbl

[8] Greene R., Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. 31 (1978) 89-95. | MR | Zbl

[9] Greene R., Petersen P., Zhu S., Riemannian manifolds of faster-than-quadratic curvature decay, Internat. Math. Res. Notices 9 (1994) 363-377. | MR | Zbl

[10] Gromov M., Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 5-99. | Numdam | MR | Zbl

[11] Sha J., Shen Z., Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997) 1399-1404. | MR | Zbl

[12] Soma T., The Gromov volume of links, Invent. Math. 64 (1981) 445-454. | MR | Zbl

Cited by Sources: