Mathematical problems in mechanics/Differential geometry
Continuity of a surface in Fréchet spaces
Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 917-921.

We establish the continuity of a surface as a function of its first two fundamental forms for several Fréchet topologies, which include in particular those of the space Wloc1,p for the first fundamental form and of the space Llocp for the second fundamental form, for any p>2.

On établit la continuité d'une surface en fonction de ses deux premières formes fondamentales pour plusieurs topologies de Fréchet, qui incluent en particulier celles de l'espace Wloc1,p pour la première forme et de l'espace Llocp pour la deuxième forme, où p>2.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.10.010
Ciarlet, Philippe G. 1; Malin, Maria 2; Mardare, Cristinel 1

1 Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
2 Department of Mathematics, University of Craiova, Craiova, 200585, Romania
@article{CRMATH_2019__357_11-12_917_0,
     author = {Ciarlet, Philippe G. and Malin, Maria and Mardare, Cristinel},
     title = {Continuity of a surface in {Fr\'echet} spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {917--921},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.010},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.10.010/}
}
TY  - JOUR
AU  - Ciarlet, Philippe G.
AU  - Malin, Maria
AU  - Mardare, Cristinel
TI  - Continuity of a surface in Fréchet spaces
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 917
EP  - 921
VL  - 357
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.10.010/
DO  - 10.1016/j.crma.2019.10.010
LA  - en
ID  - CRMATH_2019__357_11-12_917_0
ER  - 
%0 Journal Article
%A Ciarlet, Philippe G.
%A Malin, Maria
%A Mardare, Cristinel
%T Continuity of a surface in Fréchet spaces
%J Comptes Rendus. Mathématique
%D 2019
%P 917-921
%V 357
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.10.010/
%R 10.1016/j.crma.2019.10.010
%G en
%F CRMATH_2019__357_11-12_917_0
Ciarlet, Philippe G.; Malin, Maria; Mardare, Cristinel. Continuity of a surface in Fréchet spaces. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 917-921. doi : 10.1016/j.crma.2019.10.010. http://www.numdam.org/articles/10.1016/j.crma.2019.10.010/

[1] Adams, R.A. Sobolev Spaces, Academic Press, New York, 1975

[2] Ciarlet, P.G. Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl., Volume 82 (2002), pp. 253-274

[3] Ciarlet, P.G. Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013

[4] Ciarlet, P.G.; Mardare, C. Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, Anal. Appl., Volume 3 (2005), pp. 99-117

[5] Ciarlet, P.G.; Mardare, S. Nonlinear Korn inequalities in Rn and immersions in W2,p, p>n, considered as functions of their metric tensors in W1,p, J. Math. Pures Appl., Volume 105 (2016), pp. 873-906

[6] Ciarlet, P.G.; Mardare, C. A surface in W2,p is a locally Lipschitz-continuous function of its fundamental forms in W1,p and Lp, p>2, J. Math. Pures Appl., Volume 124 (2019), pp. 300-318

[7] P.G. Ciarlet, M. Malin, C. Mardare, Continuity in Fréchet topologies of a surface as a function of its fundamental forms, in preparation.

[8] Klingenberg, W. A Course in Differential Geometry, Springer, Berlin, 1978

[9] Kühnel, W. Differential Geometry: Curves – Surfaces – Manifolds, American Mathematical Society, Providence, 2002

[10] Mardare, S. On Pfaff systems with Lp coefficients and their applications in differential geometry, J. Math. Pures Appl., Volume 84 (2005), pp. 1659-1692

[11] Rudin, W. Functional Analysis, McGraw-Hill, New York, 1973

Cited by Sources: