Algebraic geometry
On the deformation rigidity of smooth projective symmetric varieties with Picard number one
Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 889-896.

Symmetric varieties are normal equivariant open embeddings of symmetric homogeneous spaces and they are interesting examples of spherical varieties. The principal goal of this article is to study the rigidity under Kähler deformations of smooth projective symmetric varieties with Picard number one.

Les variétés symétriques sont les plongements ouverts normaux équivariants des espaces homogènes symétriques et ce sont des exemples intéressants de variétés sphériques. L'objectif principal de cet article est d'étudier la rigidité sous les déformations kähleriennes des variétés projectives lisses symétriques de nombre de Picard un.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2019.10.008
Kim, Shin-Young 1; Park, Kyeong-Dong 2

1 Institut Fourier, Grenoble 38058, France
2 Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
@article{CRMATH_2019__357_11-12_889_0,
     author = {Kim, Shin-Young and Park, Kyeong-Dong},
     title = {On the deformation rigidity of smooth projective symmetric varieties with {Picard} number one},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {889--896},
     publisher = {Elsevier},
     volume = {357},
     number = {11-12},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.008},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.10.008/}
}
TY  - JOUR
AU  - Kim, Shin-Young
AU  - Park, Kyeong-Dong
TI  - On the deformation rigidity of smooth projective symmetric varieties with Picard number one
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 889
EP  - 896
VL  - 357
IS  - 11-12
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.10.008/
DO  - 10.1016/j.crma.2019.10.008
LA  - en
ID  - CRMATH_2019__357_11-12_889_0
ER  - 
%0 Journal Article
%A Kim, Shin-Young
%A Park, Kyeong-Dong
%T On the deformation rigidity of smooth projective symmetric varieties with Picard number one
%J Comptes Rendus. Mathématique
%D 2019
%P 889-896
%V 357
%N 11-12
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.10.008/
%R 10.1016/j.crma.2019.10.008
%G en
%F CRMATH_2019__357_11-12_889_0
Kim, Shin-Young; Park, Kyeong-Dong. On the deformation rigidity of smooth projective symmetric varieties with Picard number one. Comptes Rendus. Mathématique, Volume 357 (2019) no. 11-12, pp. 889-896. doi : 10.1016/j.crma.2019.10.008. http://www.numdam.org/articles/10.1016/j.crma.2019.10.008/

[1] Bai, C.; Fu, B.; Manivel, L. On Fano complete intersections in rational homogeneous varieties, Math. Z. (2019) (in press) | DOI

[2] Bott, R. Homogeneous vector bundles, Ann. of Math. (2), Volume 66 (1957) no. 2, pp. 203-248

[3] Freudenthal, H. Lie groups in the foundations of geometry, Adv. Math., Volume 1 (1964) no. 2, pp. 145-190

[4] Fu, B.; Hwang, J.-M. Classification of non-degenerate projective varieties with non-zero prolongation and application to target rigidity, Invent. Math., Volume 189 (2012) no. 2, pp. 457-513

[5] Fu, B.; Hwang, J.-M. Special birational transformations of type (2, 1), J. Algebraic Geom., Volume 27 (2018) no. 1, pp. 55-89

[6] Fu, B.; Hwang, J.-M. Isotrivial VMRT-structures of complete intersection type, Asian J. Math., Volume 22 (2018) no. 2, pp. 0333-0354

[7] Hwang, J.-M. Geometry of minimal rational curves on Fano manifolds, school on vanishing theorems and effective results, Trieste, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2001), pp. 335-393

[8] Hwang, J.-M.; Li, Q. Characterizing symplectic Grassmannians by varieties of minimal rational tangents, 2019 (preprint) | arXiv

[9] Hwang, J.-M.; Mok, N. Rigidity of irreducible Hermitian symmetric spaces of the compact type under Kähler deformation, Invent. Math., Volume 131 (1998) no. 2, pp. 393-418

[10] Hwang, J.-M.; Mok, N. Varieties of minimal rational tangents on uniruled projective manifolds, Several Complex Variables (Berkeley, CA, 1995–1996), Math. Sci. Res. Inst. Publ., 37, Cambridge University Press, Cambridge, UK, 1999, pp. 351-389

[11] Hwang, J.-M.; Mok, N. Deformation rigidity of the rational homogeneous space associated to a long simple root, Ann. Sci. Éc. Norm. Supér., Volume 35 (2002) no. 2, pp. 173-184

[12] Hwang, J.-M.; Mok, N. Deformation rigidity of the 20-dimensional F4-homogeneous space associated to a short root, Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia of Mathematical Sciences, vol. 132, Springer, Berlin, 2004, pp. 37-58

[13] Hwang, J.-M.; Mok, N. Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation, Invent. Math., Volume 160 (2005) no. 3, pp. 591-645

[14] Kebekus, S. Families of singular rational curves, J. Algebraic Geom., Volume 11 (2002) no. 2, pp. 245-256

[15] Kodaira, K. Complex Manifolds and Deformation of Complex Structures, Grundlehren der Mathematischen Wissenschaften, vol. 283, Springer, Berlin-Heidelberg-New York, 1986

[16] Landsberg, J.M.; Manivel, L. The projective geometry of Freudenthal's magic square, J. Algebra, Volume 239 (2001) no. 2, pp. 477-512

[17] Landsberg, J.M.; Manivel, L. Representation theory and projective geometry, Algebraic Transformation Groups and Algebraic Varieties, Encyclopaedia of Mathematical Sciences, vol. 132, Springer, Berlin, 2004, pp. 71-122

[18] Manivel, L. The Cayley Grassmannian, J. Algebra, Volume 503 (2018), pp. 277-298

[19] L. Manivel, The double Cayley Grassmannian, in preparation.

[20] Park, K.-D. Deformation rigidity of odd Lagrangian Grassmannians, J. Korean Math. Soc., Volume 53 (2016) no. 3, pp. 489-501

[21] Ruzzi, A. Geometrical description of smooth projective symmetric varieties with Picard number one, Transform. Groups, Volume 15 (2010) no. 1, pp. 201-226

[22] Ruzzi, A. Smooth projective symmetric varieties with Picard number one, Int. J. Math., Volume 22 (2011) no. 2, pp. 145-177

[23] Vust, T. Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Soc. Math. Fr., Volume 102 (1974), pp. 317-334

[24] Weyman, J. Cohomology of Vector Bundles and Syzygies, Cambridge Tracks in Mathematics, vol. 149, Cambridge University Press, 2003

[25] Zak, F.L. Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs, vol. 127, American Mathematical Society, Providence, RI, USA, 1993

Cited by Sources: