Number theory/Mathematical analysis
Characterization of Kummer hypergeometric Bernoulli polynomials and applications
[Sur une caractérisation des polynômes hypergéométriques de Bernoulli–Kummer et applications]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 743-751.

Dans cet article, nous présentons deux caractérisations des suites Ba,b,n(x) et Ka,b,n(x) de polynômes hypergéométriques de type Kummer définies par leurs fonctions génératrices :

extM(a,a+b;t)=n=0Ba,b,n(x)tnn! et extU(a,a+b;t)=n=0Ka,b,n(x)tnn! avec M(a,b;t)=n=0(a)n(b)ntnn!,
U(a,a+b;t) est la fonction hypergéométrique de Kummer de seconde espèce.

Premièrement, nous construisons des opérateurs de convolution Twa,b du type Gauss–Weierstrass pour chacune des suites de polynômes de Kummer de première et de seconde espèces. Deuxièmement, nous caractérisons les polynômes hypergéométriques de Kummer Ba,b,n(x) comme étant les seuls polynômes ayant une moyenne intégrale pondérée égale à zero. Cette approche nous a été inspirée par la transformation de Gauss–Weierstrass pour les polynômes de Hermite et par la représentation intégrale de type Euler–Kummer pour les fonctions hypergéométriques.

In this paper, we present two characterizations of the sequences of Kummer hypergeometric polynomials Ba,b,n(x) and Kummer hypergeometric polynomials of the second kind Ka,b,n(x), which are respectively defined by the exponential generating functions:

extM(a,a+b;t)=n=0Ba,b,n(x)tnn! and extU(a,a+b;t)=n=0Ka,b,n(x)tnn! with M(a,b;t)=n=0(a)n(b)ntnn!,
where U(a,a+b;t) is the Kummer hypergeometric function of the second kind.

First we construct Gauss–Weierstrass-type convolution operators Twa,b with a well-chosen kernel (density) function for each sequence of Kummer hypergeometric polynomials and for Kummer hypergeometric polynomials of the second kind. Then we characterize Kummer hypergeometric polynomials as the only Appell polynomials having a weighted-integral mean equal to zero. Our approach is inspired by the Gauss–Weierstrass convolution transform for Hermite polynomials and the Kummer integral representation for confluent hypergeometric functions.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.10.004
Drissi, Driss 1

1 Department of Mathematics, Rowan University, Glassboro, NJ 08028, USA
@article{CRMATH_2019__357_10_743_0,
     author = {Drissi, Driss},
     title = {Characterization of {Kummer} hypergeometric {Bernoulli} polynomials and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {743--751},
     publisher = {Elsevier},
     volume = {357},
     number = {10},
     year = {2019},
     doi = {10.1016/j.crma.2019.10.004},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.10.004/}
}
TY  - JOUR
AU  - Drissi, Driss
TI  - Characterization of Kummer hypergeometric Bernoulli polynomials and applications
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 743
EP  - 751
VL  - 357
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.10.004/
DO  - 10.1016/j.crma.2019.10.004
LA  - en
ID  - CRMATH_2019__357_10_743_0
ER  - 
%0 Journal Article
%A Drissi, Driss
%T Characterization of Kummer hypergeometric Bernoulli polynomials and applications
%J Comptes Rendus. Mathématique
%D 2019
%P 743-751
%V 357
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.10.004/
%R 10.1016/j.crma.2019.10.004
%G en
%F CRMATH_2019__357_10_743_0
Drissi, Driss. Characterization of Kummer hypergeometric Bernoulli polynomials and applications. Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 743-751. doi : 10.1016/j.crma.2019.10.004. http://www.numdam.org/articles/10.1016/j.crma.2019.10.004/

[1] Abramovitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulae, Dover, New York, 1972

[2] Appell, P.E. Sur une classe de polynômes, Ann. Éc. Norm. Supér. (2), Volume 9 (1882), pp. 119-144

[3] Appell, P.E. Sur l'équation δ2zdx2δzδy=0 et la théorie de la chaleur, J. Math. Pures Appl. (4), Volume 8 (1892), pp. 187-216

[4] Arbogast, L.F.A. Du Calcul des Dérivations, LeVrault Frères, Strasbourg, 1800

[5] Bell, K.L.; Scott, N.S. Coulomb functions (Negative Energies), Comput. Phys. Commun., Volume 20 (1980), pp. 447-458

[6] Boyle, P.; Potapchik, A. Application of high-precision computing for pricing arithmetic Asian options, Genoa, Italy, 9–12 July 2006, ACM, New York (2006), pp. 39-46

[7] Carlitz, L. The Staudt–Clausen theorem, Math. Mag., Volume 34 (1960–1961), pp. 131-146

[8] Comtet, L. Advanced Combinatorics, Reidel Publishing Co, Boston, MA, USA, 1974

[9] Costabile, F.A.; Longo, E. A determinantal approach to Appell polynomials, J. Comput. Appl. Math., Volume 234 (2010), pp. 1528-1542

[10] Dere, R.; Simsek, Y.; Srivastava, H.M. A unified presentation of three families of generalized Apostol-type polynomials based upon the theory of umbrel calculus and the umbrel algebra, J. Number Theory, Volume 133 (2013), pp. 3245-3263

[11] Dilcher, K.; Malloch, L. Arithmetic Properties of Bernoulli-Padé Numbers and Polynomials, J. Number Theory, Volume 92 (2002), pp. 330-347

[12] Dilcher, K. Bernoulli numbers and confluent hypergeometric functions, Urbana-Champaign, IL, USA, 2000 (Berndt, B.; Bennett, M.A.; Boston, N.; Diamond, H.G.; Hildebrand, A.J.; Philipp, W., eds.), A.K. Peters, Natick, MA, USA (2002), pp. 343-363

[13] Georgiev, G.N.; Georgieva-Grosse, M.N. A new property of complex Kummer function and its application to waveguide propagation, IEEE Antennas Wirel. Propag. Lett., Volume 2 (2003), pp. 306-309

[14] Georgiev, G.N.; Georgieva-Grosse, M.N. The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides, J. Telecommun. Inf. Technol., Volume 3 (2005), pp. 112-128

[15] Hassen, A.; Nguyen, H. Hypergeometric Zeta Functions, Int. J. Number Theory, Volume 6 (2010) no. 1, pp. 99-126

[16] Hille, E. Notes on linear transformations II Analyticity of semi-groups, Ann. of Math. (2), Volume 40 (1939), pp. 1-47

[17] Howard, F.T. Some sequences of rational numbers related to the exponential function, Duke Math. J., Volume 34 (1967), pp. 701-716

[18] Howard, F.T. Numbers Generated by the Reciprocal of ex1x, Math. Comput., Volume 31 (1977) no. 138, pp. 581-598

[19] Knopp, K. Infinite Sequences and Series, Dover, New York, USA, 1956

[20] Lehmer, H. A new approach to Bernoulli polynomials, Amer. Math. Mon., Volume 95 (1988), pp. 905-911

[21] Riordan, J. Derivatives of composite functions, Bull. Amer. Math. Soc., Volume 52 (1946), pp. 664-667

[22] Weierstrass, K., Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften zu Berlin (1885), pp. 633-639 (789–805)

Cité par Sources :