Differential topology/Differential geometry
Differential K-theory, η-invariant, and localization
[K-théorie différentielle, invariant η et localisation]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 803-813.

Nous établissons un résultat de comparaison de deux versions naturelles de l'invariant η équivariant par une formule locale. En combinant ce résultat avec une formule de localisation en K-théorie différentielle, nous obtenons une formule de localisation pour l'invariant η équivariant. Une étape importante est la construction d'une structure de pré-λ-anneau sur la K-théorie différentielle.

We establish a version of a localization formula for equivariant η-invariants by combining an extension of Goette's result on the comparison of two types of equivariant η-invariants and a localization formula in differential K-theory for S1-actions. An important step is to construct a pre-λ-ring structure in differential K-theory.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.09.006
Liu, Bo 1 ; Ma, Xiaonan 2

1 School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, 200241, PR China
2 Université Paris-Diderot (Paris-7), UFR de mathématiques, case 7012, 75205 Paris cedex 13, France
@article{CRMATH_2019__357_10_803_0,
     author = {Liu, Bo and Ma, Xiaonan},
     title = {Differential {\protect\emph{K}-theory,} \protect\emph{\ensuremath{\eta}}-invariant, and localization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {803--813},
     publisher = {Elsevier},
     volume = {357},
     number = {10},
     year = {2019},
     doi = {10.1016/j.crma.2019.09.006},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.09.006/}
}
TY  - JOUR
AU  - Liu, Bo
AU  - Ma, Xiaonan
TI  - Differential K-theory, η-invariant, and localization
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 803
EP  - 813
VL  - 357
IS  - 10
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.09.006/
DO  - 10.1016/j.crma.2019.09.006
LA  - en
ID  - CRMATH_2019__357_10_803_0
ER  - 
%0 Journal Article
%A Liu, Bo
%A Ma, Xiaonan
%T Differential K-theory, η-invariant, and localization
%J Comptes Rendus. Mathématique
%D 2019
%P 803-813
%V 357
%N 10
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.09.006/
%R 10.1016/j.crma.2019.09.006
%G en
%F CRMATH_2019__357_10_803_0
Liu, Bo; Ma, Xiaonan. Differential K-theory, η-invariant, and localization. Comptes Rendus. Mathématique, Tome 357 (2019) no. 10, pp. 803-813. doi : 10.1016/j.crma.2019.09.006. http://www.numdam.org/articles/10.1016/j.crma.2019.09.006/

[1] Atiyah, M.F. K-theory, Lecture Notes by D.W. Anderson, W.A. Benjamin, Inc., New York, Amsterdam, 1967

[2] Atiyah, M.F.; Macdonald, I.G. Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA, USA, London, Don Mills, ON, USA, 1969

[3] Atiyah, M.F.; Patodi, V.K.; Singer, I.M. Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69

[4] Atiyah, M.F.; Segal, G.B. The index of elliptic operators. II, Ann. of Math. (2), Volume 87 (1968), pp. 531-545

[5] Berline, N.; Getzler, E.; Vergne, M. Heat Kernels and Dirac Operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004 (corrected reprint of the 1992 original)

[6] Berline, N.; Vergne, M. Zéros d'un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J., Volume 50 (1983) no. 2, pp. 539-549

[7] Bismut, J.-M. The infinitesimal Lefschetz formulas: a heat equation proof, J. Funct. Anal., Volume 62 (1985) no. 3, pp. 435-457

[8] Bismut, J.-M. The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math., Volume 83 (1986) no. 1, pp. 91-151

[9] Bismut, J.-M. Localization formulas, superconnections, and the index theorem for families, Commun. Math. Phys., Volume 103 (1986) no. 1, pp. 127-166

[10] Bismut, J.-M. Duistermaat–Heckman formulas and index theory, Geometric Aspects of Analysis and Mechanics, Progr. Math., vol. 292, Birkhäuser/Springer, New York, 2011, pp. 1-55

[11] Bismut, J.-M.; Cheeger, J. η-invariants and their adiabatic limits, J. Amer. Math. Soc., Volume 2 (1989) no. 1, pp. 33-70

[12] Bismut, J.-M.; Freed, D. The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Commun. Math. Phys., Volume 107 (1986) no. 1, pp. 103-163

[13] Bismut, J.-M.; Goette, S. Holomorphic equivariant analytic torsions, Geom. Funct. Anal., Volume 10 (2000) no. 6, pp. 1289-1422

[14] Bismut, J.-M.; Goette, S. Equivariant de Rham torsions, Ann. of Math. (2), Volume 159 (2004) no. 1, pp. 53-216

[15] Bismut, J.-M.; Köhler, K. Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom., Volume 1 (1992) no. 4, pp. 647-684

[16] Bismut, J.-M.; Zhang, W. Real embeddings and eta invariants, Math. Ann., Volume 295 (1993) no. 4, pp. 661-684

[17] Bunke, U.; Schick, T. Differential orbifold K-theory, J. Noncommut. Geom., Volume 7 (2013) no. 4, pp. 1027-1104

[18] Donnelly, H. Eta invariants for G-spaces, Indiana Univ. Math. J., Volume 27 (1978) no. 6, pp. 889-918

[19] Freed, D.S.; Lott, J. An index theorem in differential K-theory, Geom. Topol., Volume 14 (2010) no. 2, pp. 903-966

[20] Gillet, H.; Soulé, C. Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2), Volume 131 (1990) no. 1, pp. 205-238

[21] Goette, S. Equivariant η-invariants and η-forms, J. Reine Angew. Math., Volume 526 (2000), pp. 181-236

[22] Goette, S. Eta invariants of homogeneous spaces, Pure Appl. Math. Q., Volume 5 (2009) no. 3, pp. 915-946

[23] Hopkins, M.J.; Singer, I.M. Quadratic functions in geometry, topology, and M-theory, J. Differ. Geom., Volume 70 (2005), pp. 329-452

[24] Köhler, K.; Roessler, D. A fixed point formula of Lefschetz type in Arakelov geometry. I. Statement and proof, Invent. Math., Volume 145 (2001) no. 2, pp. 333-396

[25] Köhler, K.; Roessler, D. A fixed point formula of Lefschetz type in Arakelov geometry. II. A residue formula, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 1, pp. 81-103

[26] Lawson, H.B.; Michelsohn, M.-L. Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, USA, 1989

[27] Liu, B. Real embedding and equivariant eta forms, Math. Z., Volume 292 (2019), pp. 849-878

[28] Liu, B.; Ma, X. Comparison of two equivariant η-forms | arXiv

[29] Liu, B.; Ma, X. Differential K-theory and localization formula for η-invariants | arXiv

[30] Liu, K.; Ma, X.; Zhang, W. Rigidity and vanishing theorems in K-theory, Commun. Anal. Geom., Volume 11 (2003), pp. 121-180

[31] Ma, X.; Marinescu, G. Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, vol. 254, Birkhäuser Verlag, Basel, Switzerland, 2007

[32] Maillot, V.; Roessler, D. On the periods of motives with complex multiplication and a conjecture of Gross-Deligne, Ann. of Math. (2), Volume 160 (2004), pp. 727-754

[33] Roessler, D. Lambda-structure on Grothendieck groups of Hermitian vector bundles, Isr. J. Math., Volume 122 (2001), pp. 279-304

[34] Segal, G. Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, pp. 129-151

[35] Simons, J.; Sullivan, D. Axiomatic characterization of ordinary differential cohomology, J. Topol., Volume 1 (2008) no. 1, pp. 45-56

[36] Soulé, C. Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, UK, 1992 (with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer)

[37] Zhang, W. A note on equivariant eta invariants, Proc. Amer. Math. Soc., Volume 108 (1990) no. 4, pp. 1121-1129

Cité par Sources :