Partial differential equations
On periodic subsolutions to steady second-order systems and applications
[Sur des sous-solutions périodiques de systèmes d'équations du deuxième ordre stables et applications]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 9, pp. 721-728.

Bostan et Namah (Remarks on bounded solutions of steady Hamilton–Jacobi equations, C. R. Acad. Sci. Paris, Ser. I 347(15–16) (2009) 873–878) ont montré que les solutions bornées de l'équation H(Du)=H(0), où H est superlinéaire et strictement convexe, sont les constantes. Dans cette note, on présente une autre preuve qui peut être appliquée facilement à des systèmes d'équations paraboliques dégénérées. Notre preuve s'applique à des sous-solutions périodiques au lieu des solutions bornées examinées par Bostan et Namah. Comme nous n'utilisons pas la formule d'Hopf–Lax dans la preuve, nous pouvons affaiblir un peu certaines régularités des hamiltoniens. Finalement, nous présentons une application au comportement asymptotique des solutions pour des systèmes d'équations paraboliques dégénérées.

Bostan and Namah (Remarks on bounded solutions of steady Hamilton–Jacobi equations, C. R. Acad. Sci. Paris, Ser. I 347(15–16) (2009) 873–878) proved that constant functions are the only bounded solutions to H(Du)=H(0) when H is superlinear and strictly convex. In this short note, we present a proof other than that of Bostan and Namah for equations that can be easily applied to some types of possibly degenerate parabolic systems. Our proof applies for periodic subsolutions instead of bounded solutions like that of Bostan and Namah; however, we need periodic subsolutions, which is quite restrictive. We do not consider Hopf–Lax's formula in our proof, so we can relax some restrictions on H. We also present an application to the large-time behavior of solutions to degenerate parabolic systems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2019.09.002
Nguyen, Vinh Duc 1

1 Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
@article{CRMATH_2019__357_9_721_0,
     author = {Nguyen, Vinh Duc},
     title = {On periodic subsolutions to steady second-order systems and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {721--728},
     publisher = {Elsevier},
     volume = {357},
     number = {9},
     year = {2019},
     doi = {10.1016/j.crma.2019.09.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2019.09.002/}
}
TY  - JOUR
AU  - Nguyen, Vinh Duc
TI  - On periodic subsolutions to steady second-order systems and applications
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 721
EP  - 728
VL  - 357
IS  - 9
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2019.09.002/
DO  - 10.1016/j.crma.2019.09.002
LA  - en
ID  - CRMATH_2019__357_9_721_0
ER  - 
%0 Journal Article
%A Nguyen, Vinh Duc
%T On periodic subsolutions to steady second-order systems and applications
%J Comptes Rendus. Mathématique
%D 2019
%P 721-728
%V 357
%N 9
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2019.09.002/
%R 10.1016/j.crma.2019.09.002
%G en
%F CRMATH_2019__357_9_721_0
Nguyen, Vinh Duc. On periodic subsolutions to steady second-order systems and applications. Comptes Rendus. Mathématique, Tome 357 (2019) no. 9, pp. 721-728. doi : 10.1016/j.crma.2019.09.002. http://www.numdam.org/articles/10.1016/j.crma.2019.09.002/

[1] Barles, G.; Souganidis, P.E. Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., Volume 32 (2001) no. 6, pp. 1311-1323 (electronic)

[2] Bostan, M.; Namah, G. Remarks on bounded solutions of steady Hamilton–Jacobi equations, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009) no. 15–16, pp. 873-878

[3] Calder, J. Lecture Notes on Viscosity Solutions, University of Minnesota School of Mathematics, Minneapolis, MN, USA, 2018

[4] Camilli, F.; Ley, O.; Loreti, P.; Nguyen, V.D. Large-time behavior of weakly coupled systems of first-order Hamilton–Jacobi equations, Nonlinear Differ. Equ. Appl., Volume 19 (2012), pp. 719-749

[5] Cannarsa, P.; Sinestrari, C. Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Birkhauser, Boston, MA, USA, 2004

[6] Crandall, M.G.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1-67

[7] Ishii, H.; Lions, P.-L. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., Volume 83 (1990) no. 1, pp. 26-78

[8] Ley, O.; Nguyen, V.D. Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems, Nonlinear Anal., Volume 130 (2016), pp. 76-101

[9] P.-L. Lions, B. Papanicolaou, S.R.S. Varadhan, Homogenization of Hamilton–Jacobi equations, 1986, unpublished.

[10] Mitake, H.; Tran, H.V. Remarks on the large time behavior of viscosity solutions of quasi-monotone weakly coupled systems of Hamilton–Jacobi equations, Asymptot. Anal., Volume 77 (2012) no. 1–2, p. 4370

[11] Nguyen, V.D. Some results on the large time behavior of weakly coupled systems of first-order Hamilton–Jacobi equations, J. Evol. Equ., Volume 14 (2014), pp. 299-331

Cité par Sources :