Partial differential equations
Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
[Existence d'ondes solitaires multiples avec distances relatives logarithmiques de Schrödinger non linéaires]
Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58.

On construit des solutions au problème de la propagation de deux ondes solitaires avec distance logarithmique de Schrödinger non linéaire,

itu+Δu+|u|p1u=0,tR,xRd,
dans le cas d'une masse souscritique 1<p<1+4d et d'une masse surcritique 1+4d<p<d+2d2, autrement dit, u(t), qui satisfait
u(t)eiγ(t)k=12Q(xk(t))H10
et
|x1(t)x2(t)|2log(t)quandt+,
Q est l'état fondamental. La distance logarithmique est liée à l'interaction forte entre ondes solitaires.

Dans le cas intégrable (d=1 et p=3), l'existence d'une telle solution est connue par la méthode dite d'inverse scaterring (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346 ; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). Le cas d'une masse critique p=1+4d introduit un comportement spécifique lié à l'explosion, qui a été étudié précédemment par Y. Martel et P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

We construct 2-solitary wave solutions with logarithmic distance to the nonlinear Schrödinger equation,

itu+Δu+|u|p1u=0,tR,xRd,
in mass-subcritical cases 1<p<1+4d and mass-supercritical cases 1+4d<p<d+2d2, i.e. solutions u(t) satisfying
u(t)eiγ(t)k=12Q(xk(t))H10
and
|x1(t)x2(t)|2logt,ast+,
where Q is the ground state. The logarithmic distance is related to strong interactions between solitary waves.

In the integrable case (d=1 and p=3), the existence of such solutions is known by inverse scattering (E. Olmedilla, Multiple pole solutions of the nonlinear Schrödinger equation, Physica D 25 (1987) 330–346; T. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62–69). The mass-critical case p=1+4d exhibits a specific behavior related to blow-up, previously studied in Y. Martel, P. Raphaël (Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér. 51 (2018) 701–737).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.012
Nguyễn, Tiến Vinh 1

1 CMLS, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
@article{CRMATH_2019__357_1_13_0,
     author = {Nguyễn, Tiến Vinh},
     title = {Existence of multi-solitary waves with logarithmic relative distances for the {NLS} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {13--58},
     publisher = {Elsevier},
     volume = {357},
     number = {1},
     year = {2019},
     doi = {10.1016/j.crma.2018.11.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.11.012/}
}
TY  - JOUR
AU  - Nguyễn, Tiến Vinh
TI  - Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
JO  - Comptes Rendus. Mathématique
PY  - 2019
SP  - 13
EP  - 58
VL  - 357
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.11.012/
DO  - 10.1016/j.crma.2018.11.012
LA  - en
ID  - CRMATH_2019__357_1_13_0
ER  - 
%0 Journal Article
%A Nguyễn, Tiến Vinh
%T Existence of multi-solitary waves with logarithmic relative distances for the NLS equation
%J Comptes Rendus. Mathématique
%D 2019
%P 13-58
%V 357
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.11.012/
%R 10.1016/j.crma.2018.11.012
%G en
%F CRMATH_2019__357_1_13_0
Nguyễn, Tiến Vinh. Existence of multi-solitary waves with logarithmic relative distances for the NLS equation. Comptes Rendus. Mathématique, Tome 357 (2019) no. 1, pp. 13-58. doi : 10.1016/j.crma.2018.11.012. http://www.numdam.org/articles/10.1016/j.crma.2018.11.012/

[1] Agmon, S. Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, USA, 1982

[2] Cazenave, T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, New York University, New York, 2003

[3] Cazenave, T.; Weissler, F.B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal., Volume 14 (1990) no. 10, pp. 807-836

[4] Côte, R.; Martel, Y.; Merle, F. Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations, Rev. Mat. Iberoam., Volume 27 (2011) no. 1, pp. 273-302

[5] Combet, V. Multi-existence of multi-solitons for the supercritical nonlinear Schrödinger equation in one dimension, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 1961-1993

[6] Duyckaerts, T.; Merle, F. Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal., Volume 18 (2009) no. 6, pp. 1787-1840

[7] Duyckaerts, T.; Roudenko, S. Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. Mat. Iberoam., Volume 26 (2010), pp. 1-56

[8] Ei, S.I.; Ohta, T. Equation of motion for interacting pulses, Phys. Rev. E, Volume 50 (1994), pp. 4672-4678

[9] Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, 2007

[10] Ginibre, J.; Velo, G. On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., Volume 32 (1979), pp. 1-32

[11] Gorshkov, K.A.; Ostrovsky, L.A. Interactions of solitons in non-integrable systems: direct perturbation method and applications, Physica D, Volume 3 (1981) no. 1–2, pp. 428-438

[12] Grillakis, M.; Shatah, J.; Strauss, W.A. Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., Volume 197 (1987), pp. 74-160

[13] Grillakis, M. Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system, Commun. Pure Appl. Math., Volume 43 (1990), pp. 299-333

[14] Herrero, M.A.; Velázquez, J.J.L. Flat blow-up in one-dimensional semilinear heat equations, Differ. Integral Equ., Volume 5 (1992), pp. 973-997

[15] Jendrej, J. Construction of two-bubble solutions for the energy-critical NLS, Anal. PDE, Volume 10 (2017) no. 8, pp. 1923-1959

[16] Karpman, V.I.; Solov'ev, V.V. A perturbational approach to the two-soliton system, Physica D, Volume 3 (1981) no. 1–2, pp. 487-502

[17] Krieger, J.; Martel, Y.; Raphaël, P. Two-soliton solutions to the three-dimensional gravitational Hartree equation, Commun. Pure Appl. Math., Volume 62 (2009) no. 11, pp. 1501-1550

[18] Nguyen, T.V. Strongly interacting multi-solitons with logarithmic relative distance for the gKdV equation, Nonlinearity, Volume 30 (2017) no. 12, p. 4614

[19] Olmedilla, E. Multiple pole solutions of the nonlinear Schrödinger equation, Physica D, Volume 25 (1987), pp. 330-346

[20] Martel, Y.; Merle, F. Multi-solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 849-864

[21] Martel, Y.; Merle, F. Description of two soliton collison for the quartic gKdV equation, Ann. of Math. (2), Volume 174 (2011), pp. 757-857

[22] Martel, Y.; Merle, F. Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math., Volume 183 (2011) no. 3, pp. 563-648

[23] Martel, Y.; Merle, F.; Tsai, T.-P. Stability in H1 of the sum of K solitary waves for some nonlinear Schrödinger equations, Duke Math. J., Volume 133 (2006), pp. 405-466

[24] Martel, Y.; Raphaël, P. Strongly interacting blow up bubbles for the mass critical NLS, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 701-737

[25] Merle, F. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Commun. Math. Phys., Volume 129 (1990) no. 2, pp. 223-240

[26] Merle, F.; Raphaël, P. On universality of blow-up profile for L2 critical nonlinear Schrödinger equation, Invent. Math., Volume 156 (2004) no. 3, pp. 565-672

[27] Merle, F.; Raphaël, P. The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2), Volume 161 (2005) no. 1, pp. 157-222

[28] Raphaël, P. Stability and Blow up for the Nonlinear Schrödinger Equation, Lecture Notes for the Clay Summer School on Evolution Equations, ETH, Zurich, Switzerland, 2008

[29] Raphaël, P.; Szeftel, J. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS, J. Amer. Math. Soc., Volume 24 (2011) no. 2, pp. 471-546

[30] Weinstein, M.I. Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., Volume 16 (1985), pp. 472-491

[31] Weinstein, M.I. Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-68

[32] Yang, J. Nonlinear Waves in Integrable and Non-integrable Systems, SIAM, Philadelphia, PA, 2010

[33] Zakharov, T.; Shabat, A.B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, Volume 34 (1972), pp. 62-69

Cité par Sources :