Partial differential equations
Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model
[Effet chimiotaxique contre amortissement logistique pour borner les solutions du modèle de Keller–Segel minimal en dimension 2]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 8, pp. 875-885.

Nous étudions l'effet chimiotaxique versus l'amortissement logistique pour borner les solutions du modèle de Keller–Segel minimal bien connu avec source logistique :

{ut=(uχuv)+uμu2,xΩ,t>0,vt=Δvv+u,xΩ,t>0
dans un domaine borné, lisse ΩR2 avec χ,μ>0, des données initiales u0, v0 positives ou nulles et des données au bord de Neumann homogènes. Il est bien connu que ce modèle n'a que des solutions bornées globales et uniformes en temps, pour tout χ,μ>0. Nous utilisons ici une méthode nouvelle et simple pour retrouver ces bornes en portant une attention particulière à la dépendance en χ et μ des bornes supérieures des solutions. Plus précisément, nous montrons qu'il existe C=C(u0,v0,Ω)>0 tel que
u(,t)L(Ω)C[1+1μ+χK(χ,μ)N(χ,μ)]
et
v(,t)W1,(Ω)C[1+1μ+χ83μK83(χ,μ)]=:CN(χ,μ)
uniformément sur [0,[, où
K(χ,μ)=M(χ,μ)E(χ,μ),M(χ,μ)=1+1μ+χ(1+1μ2)
et
E(χ,μ)=exp[χCGN22min{1,2χ}(4μu0L1(Ω)+132μ2|Ω|+v0L2(Ω)2)].
Nous observons que ces bornes supérieures croissent avec χ, décroissent avec μ et n'ont qu'une singularité en μ=0. Il est bien connu que le modèle minimal correspondant (en ôtant le terme uμu2 dans la première équation) a des solutions qui explosent pour les grandes données initiales.

We study the chemotaxis effect vs. logistic damping on boundedness for the well-known minimal Keller–Segel model with logistic source:

{ut=(uχuv)+uμu2,xΩ,t>0,vt=Δvv+u,xΩ,t>0
in a smooth bounded domain ΩR2 with χ,μ>0, nonnegative initial data u0, v0, and homogeneous Neumann boundary data. It is well known that this model allows only for global and uniform-in-time bounded solutions for any χ,μ>0. Here, we carefully employ a simple and new method to regain its boundedness, with particular attention to how upper bounds of solutions qualitatively depend on χ and μ. More, precisely, it is shown that there exists C=C(u0,v0,Ω)>0 such that
u(,t)L(Ω)C[1+1μ+χK(χ,μ)N(χ,μ)]
and
v(,t)W1,(Ω)C[1+1μ+χ83μK83(χ,μ)]=:CN(χ,μ)
uniformly on [0,), where
K(χ,μ)=M(χ,μ)E(χ,μ),M(χ,μ)=1+1μ+χ(1+1μ2)
and
E(χ,μ)=exp[χCGN22min{1,2χ}(4μu0L1(Ω)+132μ2|Ω|+v0L2(Ω)2)].
We notice that these upper bounds are increasing in χ, decreasing in μ, and have only one singularity at μ=0, where the corresponding minimal model (removing the term uμu2 in the first equation) is widely known to possess blow-ups for large initial data.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.07.002
Jin, Hai-Yang 1 ; Xiang, Tian 2

1 School of Mathematics, South China University of Technology, Guangzhou 510640, China
2 Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
@article{CRMATH_2018__356_8_875_0,
     author = {Jin, Hai-Yang and Xiang, Tian},
     title = {Chemotaxis effect vs. logistic damping on boundedness in the {2-D} minimal {Keller{\textendash}Segel} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {875--885},
     publisher = {Elsevier},
     volume = {356},
     number = {8},
     year = {2018},
     doi = {10.1016/j.crma.2018.07.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.07.002/}
}
TY  - JOUR
AU  - Jin, Hai-Yang
AU  - Xiang, Tian
TI  - Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 875
EP  - 885
VL  - 356
IS  - 8
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.07.002/
DO  - 10.1016/j.crma.2018.07.002
LA  - en
ID  - CRMATH_2018__356_8_875_0
ER  - 
%0 Journal Article
%A Jin, Hai-Yang
%A Xiang, Tian
%T Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model
%J Comptes Rendus. Mathématique
%D 2018
%P 875-885
%V 356
%N 8
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.07.002/
%R 10.1016/j.crma.2018.07.002
%G en
%F CRMATH_2018__356_8_875_0
Jin, Hai-Yang; Xiang, Tian. Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model. Comptes Rendus. Mathématique, Tome 356 (2018) no. 8, pp. 875-885. doi : 10.1016/j.crma.2018.07.002. http://www.numdam.org/articles/10.1016/j.crma.2018.07.002/

[1] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M. Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 1663-1763

[2] Cao, X. Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 1891-1904

[3] Feireisl, E.; Laurencot, P.; Petzeltova, H. On convergence to equilibria for the Keller–Segel chemotaxis model, J. Differential Equations, Volume 236 (2007), pp. 551-569

[4] Friedman, A. Partial Differential Equations, Holt, Rinehart and Winston, New York–Montréal, Québec–London, 1969

[5] Fujie, K.; Winkler, M.; Yokota, T. Blow-up prevention by logistic sources in a parabolic–elliptic Keller–Segel system with singular sensitivity, Nonlinear Anal., Volume 109 (2014), pp. 56-71

[6] Fujie, K.; Ito, A.; Winkler, M.; Yokota, T. Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 151-169

[7] He, X.; Zheng, S. Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., Volume 436 (2016), pp. 970-982

[8] Hillen, T.; Potapov, A. The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci., Volume 27 (2004), pp. 1783-1801

[9] Hillen, T.; Painter, K. Spatio-temporal chaos in a chemotaxis model, Physica D, Volume 240 (2011), pp. 363-375

[10] Hu, B.; Tao, Y. Boundedness in a parabolic–elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., Volume 64 (2017), pp. 1-7

[11] Horstmann, D.; Wang, G. Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177

[12] Horstmann, D. From 1970 until now: the Keller–Segel model in chemotaxis and its consequence I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165

[13] Horstmann, D.; Winkler, M. Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107

[14] Kang, K.; Stevens, A. Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal., Volume 135 (2016), pp. 57-72

[15] Keller, E.; Segel, L. Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415

[16] Kowalczyk, R.; Szymańska, Z. On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., Volume 343 (2008), pp. 379-398

[17] Lankeit, J. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equ., Volume 258 (2015), pp. 1158-1191

[18] Lankeit, J. Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst., Ser. B, Volume 20 (2015), pp. 1499-1527

[19] Lin, K.; Mu, C. Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 5025-5046

[20] Mimura, M.; Tsujikawa, T. Aggregating pattern dynamics in a chemotaxis model including growth, Physica A, Volume 230 (1996), pp. 449-543

[21] Nagai, T. Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55

[22] Nagai, T.; Senba, T.; Yoshida, K. Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433

[23] Nirenberg, L. An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3), Volume 20 (1966), pp. 733-737

[24] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M. Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., Volume 51 (2002), pp. 119-144

[25] Osaki, K.; Yagi, A. Finite dimensional attractor for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469

[26] Senba, T.; Suzuki, T. Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367

[27] Stinner, C.; Surulescu, C.; Winkler, M. Global weak solutions in a PDE–ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., Volume 46 (2014), pp. 1969-2007

[28] Tao, Y.; Winkler, M. Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., Volume 66 (2015), pp. 2555-2573

[29] Tao, Y.; Winkler, M. Persistence of mass in a chemotaxis system with logistic source, J. Differ. Equ., Volume 259 (2015), pp. 6142-6161

[30] Tello, J.; Winkler, M. A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877

[31] Winkler, M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905

[32] Winkler, M. Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537

[33] Winkler, M. Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl., Volume 100 (2013), pp. 748-767

[34] Winkler, M. Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., Volume 257 (2014), pp. 1056-1077

[35] Winkler, M. How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., Volume 24 (2014), pp. 809-855

[36] Winkler, M. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst., Ser. B, Volume 22 (2017), pp. 2777-2793

[37] Xiang, T. On effects of sampling radius for the nonlocal Patlak–Keller–Segel chemotaxis model, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 4911-4946

[38] Xiang, T. Boundedness and global existence in the higher-dimensional parabolic–parabolic chemotaxis system with/without growth source, J. Differ. Equ., Volume 258 (2015), pp. 4275-4323

[39] Xiang, T. How strong a logistic damping can prevent blow-up for the minimal Keller–Segel chemotaxis system?, J. Math. Anal. Appl., Volume 459 (2018), pp. 1172-1200

[40] Xiang, T. Dynamics in a parabolic–elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal. (2018) (in press)

[41] Yang, C.; Cao, X.; Jiang, Z.; Zheng, S. Boundedness in a quasilinear fully parabolic Keller–Segel system of higher dimension with logistic source, J. Math. Anal. Appl., Volume 430 (2015), pp. 585-591

Cité par Sources :