Mathematical analysis/Harmonic analysis
Density of spaces of trigonometric polynomials with frequencies from a subgroup in Lα-spaces
Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 586-593.

Let G be an LCA group, H a closed subgroup, Γ the dual group of G and μ be a regular finite non-negative Borel measure on Γ. We give some necessary and sufficient conditions for the density of the set of trigonometric polynomials on Γ with frequencies from H in the space Lα(μ),α(0,).

Soit G un groupe abélien, localement compact pour une topologie séparée, H un sous-groupe fermé, Γ le groupe dual de G et μ une mesure de Borel positive ou nulle, régulière et finie sur Γ. Nous donnons des conditions nécessaires et suffisantes pour que l'ensemble des polynômes trigonométriques sur Γ avec fréquences dans H soit dense dans Lα(μ), α(0,).

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.04.021
Medina, Juan Miguel 1; Klotz, Lutz Peter 2; Riedel, Manfred 2

1 Universidad de Buenos Aires, Facultad de Ingeniería, Departamento de Matemática and Inst. Argentino de Matemática “A. P. Calderón” – CONICET, Saavedra 15, 3er piso (1083), Buenos Aires, Argentina
2 Fakultät für Mathematik und Informatik, Universität Leipzig, 04109 Leipzig, Germany
@article{CRMATH_2018__356_6_586_0,
     author = {Medina, Juan Miguel and Klotz, Lutz Peter and Riedel, Manfred},
     title = {Density of spaces of trigonometric polynomials with frequencies from a subgroup in {\protect\emph{L}\protect\textsuperscript{\protect\emph{\ensuremath{\alpha}}}-spaces}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {586--593},
     publisher = {Elsevier},
     volume = {356},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crma.2018.04.021},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.04.021/}
}
TY  - JOUR
AU  - Medina, Juan Miguel
AU  - Klotz, Lutz Peter
AU  - Riedel, Manfred
TI  - Density of spaces of trigonometric polynomials with frequencies from a subgroup in Lα-spaces
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 586
EP  - 593
VL  - 356
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.04.021/
DO  - 10.1016/j.crma.2018.04.021
LA  - en
ID  - CRMATH_2018__356_6_586_0
ER  - 
%0 Journal Article
%A Medina, Juan Miguel
%A Klotz, Lutz Peter
%A Riedel, Manfred
%T Density of spaces of trigonometric polynomials with frequencies from a subgroup in Lα-spaces
%J Comptes Rendus. Mathématique
%D 2018
%P 586-593
%V 356
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.04.021/
%R 10.1016/j.crma.2018.04.021
%G en
%F CRMATH_2018__356_6_586_0
Medina, Juan Miguel; Klotz, Lutz Peter; Riedel, Manfred. Density of spaces of trigonometric polynomials with frequencies from a subgroup in Lα-spaces. Comptes Rendus. Mathématique, Volume 356 (2018) no. 6, pp. 586-593. doi : 10.1016/j.crma.2018.04.021. http://www.numdam.org/articles/10.1016/j.crma.2018.04.021/

[1] Beaty, M.G.; Dodson, M.M.; Eveson, S.P. A converse to Kluvánek's theorem, J. Fourier Anal. Appl., Volume 13 (2007) no. 2, pp. 187-195

[2] Cohn, D.L. Measure theory, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser/Springer, New York, 2013

[3] Feldman, J.; Greenleaf, F.P. Existence of Borel transversals in groups, Pac. J. Math., Volume 25 (1968), pp. 455-461

[4] Fernández-Morales, H.R.; García, A.G.; Herández-Medina, M.A.; Muñoz-Bouzo, M.J. Generalized sampling: from shift-invariant to u-invariant spaces, Anal. Appl., Volume 13 (2015) no. 03, pp. 303-329

[5] Führ, H.; Gröchenig, K. Sampling theorems on locally compact groups from oscillation estimates, Math. Z., Volume 255 (2007) no. 1, pp. 177-194

[6] Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis. Volume II – Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups, Die Grundlehren der Mathematischen Wissenschaften, vol. 152, Springer-Verlag, Berlin–New York, 1970

[7] Hewitt, E.; Ross, K.A. Abstract Harmonic Analysis. Volume I – Structure of Topological Groups, Integration Theory, Group Representations, Die Grundlehren der Mathematischen Wissenschaften, vol. 115, Springer-Verlag, Berlin–New York, 1979

[8] Klee, V.L. Invariant metrics in groups (solution of a problem of Banach), Proc. Amer. Math. Soc., Volume 3 (1952), pp. 484-487

[9] Klotz, L.; Riedel, M. Periodic observations of harmonizable symmetric stable processes, Probab. Math. Stat., Volume 25 (2005), pp. 289-306

[10] Kluvánek, I. Sampling theorem in abstract harmonic analysis, Mat.-Fyz. Čas., Volume 15 (1965) no. 1, pp. 43-47

[11] Lee, A.J. Sampling theorems for nonstationary random processes, Trans. Amer. Math. Soc., Volume 242 (1978), pp. 225-241

[12] Lloyd, S.P. A sampling theorem for stationary (wide sense) stochastic processes, Trans. Amer. Math. Soc., Volume 92 (1959) no. 1, pp. 1-12

[13] Morris, S.A. Pontryagin Duality and the Structure of Locally Compact Abelian Groups, London Mathematical Society Lecture Notes Series, vol. 29, Cambridge University Press, Cambridge–New York–Melbourne, 1977

[14] Parthasarathy, K.R. Introduction to Probability and Measure, The MacMillan Co. of India, Delhi, 1977

[15] Rao, M.M. Conditional Measures and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 177, Marcel Dekker Inc., New York, 1993

Cited by Sources: