Geometry/Differential geometry
On the Lichnerowicz conjecture for CR manifolds with mixed signature
Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 532-537.

We construct examples of nondegenerate CR manifolds with Levi form of signature (p,q), 2pq, which are compact, not locally CR flat, and admit essential CR vector fields. We also construct an example of a noncompact nondegenerate CR manifold with signature (1,n1) that is not locally CR flat and admits an essential CR vector field. These provide counterexamples to the analogue of the Lichnerowicz conjecture for CR manifolds with mixed signature.

Nous construisons des exemples de variétés CR non dégénérées avec une forme de Levi de signature (p,q), 2pq, qui sont compactes, non localement CR plates et admettent des champs de vecteurs CR essentiels. Nous construisons également un exemple d'une variété CR non dégénérée et non compacte, de signature (1,n1), qui n'est pas localement CR plate et admet un champ de vecteurs CR essentiel. Ceci fournit des contre-exemples aux analogues de la conjecture de Lichnerowicz pour les variétés CR de signature mixte.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.03.012
Case, Jeffrey S. 1; Curry, Sean N. 2; Matveev, Vladimir S. 3

1 109 McAllister Building, Penn State University, University Park, PA 16802, USA
2 Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0112, USA
3 Institut für Mathematik, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany
@article{CRMATH_2018__356_5_532_0,
     author = {Case, Jeffrey S. and Curry, Sean N. and Matveev, Vladimir S.},
     title = {On the {Lichnerowicz} conjecture for {CR} manifolds with mixed signature},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {532--537},
     publisher = {Elsevier},
     volume = {356},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crma.2018.03.012},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.03.012/}
}
TY  - JOUR
AU  - Case, Jeffrey S.
AU  - Curry, Sean N.
AU  - Matveev, Vladimir S.
TI  - On the Lichnerowicz conjecture for CR manifolds with mixed signature
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 532
EP  - 537
VL  - 356
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.03.012/
DO  - 10.1016/j.crma.2018.03.012
LA  - en
ID  - CRMATH_2018__356_5_532_0
ER  - 
%0 Journal Article
%A Case, Jeffrey S.
%A Curry, Sean N.
%A Matveev, Vladimir S.
%T On the Lichnerowicz conjecture for CR manifolds with mixed signature
%J Comptes Rendus. Mathématique
%D 2018
%P 532-537
%V 356
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.03.012/
%R 10.1016/j.crma.2018.03.012
%G en
%F CRMATH_2018__356_5_532_0
Case, Jeffrey S.; Curry, Sean N.; Matveev, Vladimir S. On the Lichnerowicz conjecture for CR manifolds with mixed signature. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 532-537. doi : 10.1016/j.crma.2018.03.012. http://www.numdam.org/articles/10.1016/j.crma.2018.03.012/

[1] Chern, S.S.; Moser, J.K. Real hypersurfaces in complex manifolds, Acta Math., Volume 133 (1974), pp. 219-271

[2] D'Ambra, G.; Gromov, M. Lectures on transformation groups: geometry and dynamics, Cambridge, MA, USA, 1990, Lehigh Univ., Bethlehem, PA, USA (1991), pp. 19-111

[3] Ferrand, J. Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A. Lichnerowicz), Mém. Cl. Sci., Acad. R. Belg., Coll. 8 (2), Volume 39 (1971) no. 5, p. 44

[4] Ferrand, J. The action of conformal transformations on a Riemannian manifold, Math. Ann., Volume 304 (1996) no. 2, pp. 277-291

[5] Frances, C. About pseudo-Riemannian Lichnerowicz conjecture, Transform. Groups, Volume 20 (2015) no. 4, pp. 1015-1022

[6] Kruglikov, B. Submaximally symmetric CR-structures, J. Geom. Anal., Volume 26 (2016) no. 4, pp. 3090-3097

[7] Kruglikov, B.; The, D. The gap phenomenon in parabolic geometries, J. Reine Angew. Math., Volume 723 (2017), pp. 153-215

[8] Lee, J.M. The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc., Volume 296 (1986) no. 1, pp. 411-429

[9] Lee, J.M. Pseudo-Einstein structures on CR manifolds, Amer. J. Math., Volume 110 (1988) no. 1, pp. 157-178

[10] Markowitz, M.J. An intrinsic conformal Lorentz pseudodistance, Math. Proc. Camb. Philos. Soc., Volume 89 (1981) no. 2, pp. 359-371

[11] Obata, M. The conjectures on conformal transformations of Riemannian manifolds, J. Differ. Geom., Volume 6 (1971–1972), pp. 247-258

[12] Schoen, R. On the conformal and CR automorphism groups, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 464-481

[13] Winkelmann, J. The Classification of Three-Dimensional Homogeneous Complex Manifolds, Lecture Notes in Mathematics, vol. 1602, Springer-Verlag, Berlin, 1995

Cited by Sources: