Complex analysis/Harmonic analysis
On the norms of quaternionic harmonic projection operators
Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 482-488.

As a consequence of integral bounds for three classes of quaternionic spherical harmonics, we prove some bounds from below for the (Lp,L2) norm of quaternionic harmonic projectors, for p[1,2].

En conséquence d'estimations intégrales pour trois classes d'harmoniques sphériques quaternioniques, nous prouvons quelques minorations pour la (Lp,L2) norme des projecteurs harmoniques quaternioniques, pour p[1,2].

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2018.03.011
Bramati, Roberto 1; Casarino, Valentina 2; Ciatti, Paolo 3

1 Università degli Studi di Padova, Via Trieste 53, 35100 Padova, Italy
2 Università degli Studi di Padova, Stradella san Nicola 3, 36100 Vicenza, Italy
3 Università degli Studi di Padova, Via Marzolo 9, 35100 Padova, Italy
@article{CRMATH_2018__356_5_482_0,
     author = {Bramati, Roberto and Casarino, Valentina and Ciatti, Paolo},
     title = {On the norms of quaternionic harmonic projection operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {482--488},
     publisher = {Elsevier},
     volume = {356},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crma.2018.03.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2018.03.011/}
}
TY  - JOUR
AU  - Bramati, Roberto
AU  - Casarino, Valentina
AU  - Ciatti, Paolo
TI  - On the norms of quaternionic harmonic projection operators
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 482
EP  - 488
VL  - 356
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2018.03.011/
DO  - 10.1016/j.crma.2018.03.011
LA  - en
ID  - CRMATH_2018__356_5_482_0
ER  - 
%0 Journal Article
%A Bramati, Roberto
%A Casarino, Valentina
%A Ciatti, Paolo
%T On the norms of quaternionic harmonic projection operators
%J Comptes Rendus. Mathématique
%D 2018
%P 482-488
%V 356
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2018.03.011/
%R 10.1016/j.crma.2018.03.011
%G en
%F CRMATH_2018__356_5_482_0
Bramati, Roberto; Casarino, Valentina; Ciatti, Paolo. On the norms of quaternionic harmonic projection operators. Comptes Rendus. Mathématique, Volume 356 (2018) no. 5, pp. 482-488. doi : 10.1016/j.crma.2018.03.011. http://www.numdam.org/articles/10.1016/j.crma.2018.03.011/

[1] Bouhaik, M.; Gallardo, L. A Mehler–Heine formula for disk polynomials, Indag. Math., Volume 2 (1991), pp. 9-18

[2] Burq, N.; Gérard, P.; Tzvetkov, N. The Schrödinger equation on a compact manifold: Strichartz estimates and applications, Journées “Équations aux dérivées partielles”, Exp. No. V, University of Nantes, France, 2001

[3] Burq, N.; Gérard, P.; Tzvetkov, N. Strichartz inequalities and the non-linear Schrödinger equation on compact manifold, Amer. J. Math., Volume 126 (2004), pp. 569-605

[4] Casarino, V. Two-parameter estimates for joint spectral projections on complex spheres, Math. Z., Volume 261 (2009), pp. 245-259

[5] Casarino, V.; Ciatti, P. Transferring Lp eigenfunction bounds from S2n+1 to hn, Stud. Math., Volume 194 (2009), pp. 23-42

[6] Casarino, V.; Ciatti, P. Lp joint eigenfunction bounds on quaternionic spheres, J. Fourier Anal. Appl., Volume 23 (2017), pp. 886-918

[7] Casarino, V.; Peloso, M. Strichartz estimates and the nonlinear Schrödinger equation for the sublaplacian on complex spheres, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 2631-2664

[8] Jaming, P. Harmonic functions on classical rank one balls, Boll. Unione Mat. Ital., Volume 8 (2001), pp. 685-702

[9] Johnson, K.D.; Wallach, N.R. Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc., Volume 229 (1977), pp. 137-173

[10] Kostant, B. On the existence and the irreducibility of certain series of representations, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 627-642

[11] Sogge, C. Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65

[12] Sogge, C. Fourier Integrals in Classical Analysis, Camb. Tracts Math., vol. 105, Cambridge University Press, Cambridge, UK, 1993

[13] Szegö, G. Orthogonal Polynomials, Colloq. Publ. – Amer. Math. Soc., vol. 23, American Mathematical Society, Providence, RI, USA, 1974

Cited by Sources: