Partial differential equations/Mathematical physics
On maximizing the fundamental frequency of the complement of an obstacle
Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 406-411.

Let ΩRn be a bounded domain satisfying a Hayman-type asymmetry condition, and let D be an arbitrary bounded domain referred to as an “obstacle”. We are interested in the behavior of the first Dirichlet eigenvalue λ1(Ω(x+D)).

First, we prove an upper bound on λ1(Ω(x+D)) in terms of the distance of the set x+D to the set of maximum points x0 of the first Dirichlet ground state ϕλ1>0 of Ω. In short, a direct corollary is that if

is large enough in terms of λ1(Ω), then all maximizer sets x+D of μΩ are close to each maximum point x0 of ϕλ1.

Second, we discuss the distribution of ϕλ1(Ω) and the possibility to inscribe wavelength balls at a given point in Ω.

Finally, we specify our observations to convex obstacles D and show that if μΩ is sufficiently large with respect to λ1(Ω), then all maximizers x+D of μΩ contain all maximum points x0 of ϕλ1(Ω).

Soit ΩRn un domaine borné satisfaisant une condition de type Hayman asymétrique et soit D un domaine borné arbitraire, dénommé « obstacle ». Nous nous intéressons au comportement de la première valeur propre de Dirichlet λ1(Ω(x+D)).

Nous établissons, dans un premier temps, une borne supérieure pour cette valeur propre en termes de la distance de l'ensemble x+D à l'ensemble des points x0 où la fonction propre du premier état de base de Dirichlet ϕλ1>0 de Ω atteint son maximum. En bref, un corollaire immédiat est que, si

est suffisamment grand en fonction de λ1(Ω), alors tous les ensembles maximisant x+D de μΩ sont proches de chaque point x0ϕλ1 est maximum.

Ensuite, nous discutons la distribution de ϕλ1(Ω) et la possibilité d'inscrire des boules de longueur d'onde en un point donné de Ω.

Enfin, nous appliquons nos observations aux obstacles convexes D, et nous montrons que, si μΩ est suffisamment grand par rapport à λ1(Ω), alors tous les ensembles maximisant x+D de μΩ contiennent tous les points x0ϕλ1(Ω) est maximum.

Published online:
DOI: 10.1016/j.crma.2018.01.018
Georgiev, Bogdan 1; Mukherjee, Mayukh 2

1 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
2 Mathematics Department, Technion – I.I.T., Haifa 32000, Israel
     author = {Georgiev, Bogdan and Mukherjee, Mayukh},
     title = {On maximizing the fundamental frequency of the complement of an obstacle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {406--411},
     publisher = {Elsevier},
     volume = {356},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crma.2018.01.018},
     language = {en},
     url = {}
AU  - Georgiev, Bogdan
AU  - Mukherjee, Mayukh
TI  - On maximizing the fundamental frequency of the complement of an obstacle
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 406
EP  - 411
VL  - 356
IS  - 4
PB  - Elsevier
UR  -
DO  - 10.1016/j.crma.2018.01.018
LA  - en
ID  - CRMATH_2018__356_4_406_0
ER  - 
%0 Journal Article
%A Georgiev, Bogdan
%A Mukherjee, Mayukh
%T On maximizing the fundamental frequency of the complement of an obstacle
%J Comptes Rendus. Mathématique
%D 2018
%P 406-411
%V 356
%N 4
%I Elsevier
%R 10.1016/j.crma.2018.01.018
%G en
%F CRMATH_2018__356_4_406_0
Georgiev, Bogdan; Mukherjee, Mayukh. On maximizing the fundamental frequency of the complement of an obstacle. Comptes Rendus. Mathématique, Volume 356 (2018) no. 4, pp. 406-411. doi : 10.1016/j.crma.2018.01.018.

[1] Brascamp, H.; Lieb, E. On extensions of the Brunn–Minkowski and Prekopa–Leindler theorems, including inequalities for log concave functions, and with an application to a diffusion equation, J. Funct. Anal., Volume 22 (1976), pp. 366-389

[2] Brasco, L.; Magnanini, R.; Salani, P. The location of the hot spot in a grounded convex conductor, Indiana Univ. Math. J., Volume 60 (2011) no. 2, pp. 633-659

[3] El Souf, A.; Harrell, E. On the placement of an obstacle so as to optimize the Dirichlet heat trace, SIAM J. Math. Anal., Volume 48 (2016) no. 2, pp. 884-894

[4] Flucher, M. Approximation of Dirichlet eigenvalues on domains with small holes, J. Math. Anal. Appl., Volume 193 (1995) no. 1, pp. 169-199

[5] Georgiev, B. On the lower bound of the inner radius of nodal domains | arXiv

[6] Georgiev, B.; Mukherjee, M. Nodal geometry, heat diffusion and Brownian motion, Anal. PDE, Volume 11 (2018) no. 1, pp. 133-148

[7] Georgiev, B.; Mukherjee, M. Some remarks on nodal geometry in the smooth setting | arXiv

[8] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 (reprint of the 1998 edition)

[9] Grieser, D.; Jerison, D. The size of the first eigenfunction of a convex planar domain, J. Amer. Math. Soc., Volume 11 (1998) no. 1, pp. 41-72

[10] Grigor'yan, A.; Saloff-Coste, L. Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures Appl., Volume 81 (2002), pp. 115-142

[11] Harrell, E.; Kröger, P.; Kurata, K. On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal., Volume 33 (2001) no. 1, pp. 240-259

[12] Hayman, W. Some bounds for principal frequency, Appl. Anal., Volume 7 (1977–1978) no. 3, pp. 247-254

[13] Henrot, A. Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, Switzerland, 2006

[14] Kesavan, S. On two functionals connected to the Laplacian in a class of doubly connected domains, Proc. R. Soc. Edinb. A, Volume 133 (2003) no. 3, pp. 617-624

[15] Lieb, E. On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., Volume 74 (1983) no. 3, pp. 441-448

[16] Mangoubi, D. Local asymmetry and the inner radius of nodal domains, Commun. Partial Differ. Equ., Volume 33 (2008) no. 9, pp. 1611-1621

[17] Maz'ya, V. Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, Germany, 2011

[18] Maz'ya, V.; Shubin, M. Can one see the fundamental frequency of a drum?, Lett. Math. Phys., Volume 74 (2005), pp. 135-151

[19] Rachh, M.; Steinerberger, S. On the location of maxima of solutions of Schrödinger's equation, Commun. Pure Appl. Math. (2018) (in press) | arXiv

Cited by Sources: