Group theory/Logic
Varieties generated by unstable involution semigroups with continuum many subvarieties
Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 44-51.

Over the years, several finite semigroups have been found to generate varieties with continuum many subvarieties. However, finite involution semigroups that generate varieties with continuum many subvarieties seem much rarer; in fact, only one example—an inverse semigroup of order 165—has so far been published. Nevertheless, it is shown in the present article that there are many smaller examples among involution semigroups that are unstable in the sense that the varieties they generate contain some involution semilattice with nontrivial unary operation. The most prominent examples are the unstable finite involution semigroups that are inherently non-finitely based, the smallest ones of which are of order six. It follows that the join of two finitely generated varieties of involution semigroups with finitely many subvarieties can contain continuum many subvarieties.

Avec le temps, on a découvert plusieurs demi-groupes finis engendrant des variétés contenant un ensemble continu de sous-variétés. Toutefois, les demi-groupes involutifs finis qui engendrent des variétés contenant autant de sous-variétés semblent beaucoup plus rares ; en fait, un seul exemple – un demi-groupe inversif d'ordre 165 – a été publié à ce jour. Nous montrons dans le présent article qu'il y a néanmoins beaucoup d'exemples plus petits parmi les demi-groupes involutifs qui sont instables, dans le sens que les variétés qu'ils engendrent contiennent un demi-réseau involutif avec une opération unaire non triviale. Les exemples les plus frappants sont les demi-groupes involutifs finis qui n'ont pas de base finie par essence, le plus petit étant d'ordre 6. Il s'ensuit que le joint de deux variétés engendrées par des demi-groupes involutifs finis et n'ayant qu'un nombre fini de sous-variétés peut contenir un ensemble continu de sous-variétés.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.12.001
Lee, Edmond W.H. 1

1 Department of Mathematics, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
@article{CRMATH_2018__356_1_44_0,
     author = {Lee, Edmond W.H.},
     title = {Varieties generated by unstable involution semigroups with continuum many subvarieties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {44--51},
     publisher = {Elsevier},
     volume = {356},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crma.2017.12.001},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.12.001/}
}
TY  - JOUR
AU  - Lee, Edmond W.H.
TI  - Varieties generated by unstable involution semigroups with continuum many subvarieties
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 44
EP  - 51
VL  - 356
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.12.001/
DO  - 10.1016/j.crma.2017.12.001
LA  - en
ID  - CRMATH_2018__356_1_44_0
ER  - 
%0 Journal Article
%A Lee, Edmond W.H.
%T Varieties generated by unstable involution semigroups with continuum many subvarieties
%J Comptes Rendus. Mathématique
%D 2018
%P 44-51
%V 356
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.12.001/
%R 10.1016/j.crma.2017.12.001
%G en
%F CRMATH_2018__356_1_44_0
Lee, Edmond W.H. Varieties generated by unstable involution semigroups with continuum many subvarieties. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 44-51. doi : 10.1016/j.crma.2017.12.001. http://www.numdam.org/articles/10.1016/j.crma.2017.12.001/

[1] Auinger, K.; Dolinka, I.; Pervukhina, T.V.; Volkov, M.V. Unary enhancements of inherently non-finitely based semigroups, Semigroup Forum, Volume 89 (2014), pp. 41-51

[2] Auinger, K.; Dolinka, I.; Volkov, M.V. Equational theories of semigroups with involution, J. Algebra, Volume 369 (2012), pp. 203-225

[3] Auinger, K.; Dolinka, I.; Volkov, M.V. Matrix identities involving multiplication and transposition, J. Eur. Math. Soc., Volume 14 (2012), pp. 937-969

[4] Burris, S.; Sankappanavar, H.P. A Course in Universal Algebra, Springer-Verlag, New York, 1981

[5] Crvenković, S.; Dolinka, I.; Vinčić, M. Equational bases for some 0-direct unions of semigroups, Studia Sci. Math. Hung., Volume 36 (2000), pp. 423-431

[6] Dolinka, I. On the lattice of varieties of involution semigroups, Semigroup Forum, Volume 62 (2001), pp. 438-459

[7] Edmunds, C.C.; Lee, E.W.H.; Lee, K.W.K. Small semigroups generating varieties with continuum many subvarieties, Order, Volume 27 (2010), pp. 83-100

[8] Fajtlowicz, S. Equationally complete semigroups with involution, Algebra Univers., Volume 1 (1971), pp. 355-358

[9] Jackson, M. Finite semigroups whose varieties have uncountably many subvarieties, J. Algebra, Volume 228 (2000), pp. 512-535

[10] M. Jackson, E.W.H. Lee, Monoid varieties with extreme properties, Trans. Amer. Math. Soc., , in press. | DOI

[11] Jackson, M.; McKenzie, R. Interpreting graph colorability in finite semigroups, Int. J. Algebra Comput., Volume 16 (2006), pp. 119-140

[12] Jackson, M.; Sapir, O. Finitely based, finite sets of words, Int. J. Algebra Comput., Volume 10 (2000), pp. 683-708

[13] Kad'ourek, J. A finitely generated variety of combinatorial inverse semigroups having uncountably many subvarieties, Proc. R. Soc. Edinb., Sect. A, Math., Volume 132 (2002), pp. 1373-1394

[14] Kleĭman, E.I. On basis of identities of Brandt semigroups, Semigroup Forum, Volume 13 (1977), pp. 209-218

[15] Lee, E.W.H. Subvarieties of the variety generated by the five-element Brandt semigroup, Int. J. Algebra Comput., Volume 16 (2006), pp. 417-441

[16] Lee, E.W.H. Inherently non-finitely generated varieties of aperiodic monoids with central idempotents, J. Math. Sci. (N.Y.), Volume 209 (2015), pp. 588-599 (reprint of Zap. Nauč. Semin. POMI, 423, 2014, pp. 166-182)

[17] Lee, E.W.H. Finitely based finite involution semigroups with non-finitely based reducts, Quaest. Math., Volume 39 (2016), pp. 217-243

[18] Lee, E.W.H. Equational theories of unstable involution semigroups, Electron. Res. Announc. Math. Sci., Volume 24 (2017), pp. 10-20

[19] Lee, E.W.H.; Li, J.R. Minimal non-finitely based monoids, Diss. Math. (Rozprawy Mat.), Volume 475 (2011) (65 pp)

[20] Lee, E.W.H.; Li, J.R. The variety generated by all monoids of order four is finitely based, Glas. Mat. Ser. III, Volume 50 (2015), pp. 373-396

[21] Lee, E.W.H.; Li, J.R.; Zhang, W.T. Minimal non-finitely based semigroups, Semigroup Forum, Volume 85 (2012), pp. 577-580

[22] Lee, E.W.H.; Zhang, W.T. Finite basis problem for semigroups of order six, LMS J. Comput. Math., Volume 18 (2015), pp. 1-129

[23] Oates, S.; Powell, M.B. Identical relations in finite groups, J. Algebra, Volume 1 (1964), pp. 11-39

[24] Sapir, M.V. Problems of Burnside type and the finite basis property in varieties of semigroups, Math. USSR, Izv., Volume 30 (1988), pp. 295-314 (translation of Izv. Akad. Nauk SSSR, Ser. Mat., 51, 1987, pp. 319-340)

[25] Sapir, M.V. Identities of finite inverse semigroups, Int. J. Algebra Comput., Volume 3 (1993), pp. 115-124

[26] Sapir, O. Non-finitely based monoids, Semigroup Forum, Volume 90 (2015), pp. 557-586

[27] Trahtman, A.N. A six-element semigroup that generates a variety with a continuum of subvarieties, Ural. Gos. Univ. Mat. Zap., Volume 14 (1988) no. 3, pp. 138-143 (in Russian)

[28] Vernikov, B.M. On modular elements of the lattice of semigroup varieties, Comment. Math. Univ. Carol., Volume 48 (2007), pp. 595-606

[29] Zhang, W.T.; Luo, Y.F. The variety generated by a certain transformation monoid, Int. J. Algebra Comput., Volume 18 (2008), pp. 1193-1201

Cited by Sources: