Complex analysis
The approximation of Laplace–Stieltjes transformations with finite order on the left half plane
Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 63-76.

In this paper, we study the error in approximating the analytic function defined by a Laplace–Stieltjes transformation of finite order, which converges on the left half plane, and obtain the relation theorems between the error, the coefficients, and the proximate order of the Laplace–Stieltjes transformation.

Dans cette Note, nous étudions l'erreur d'approximation d'une fonction analytique définie comme une transformée de Laplace–Stieltjes d'ordre fini, qui converge dans le demi-plan gauche. Nous obtenons des théorèmes reliant cette erreur, les coefficients et l'ordre d'approximation de la transformation de Laplace–Stieltjes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2017.11.011
Xu, Hong-Yan 1; Kong, Yin-Ying 2

1 Department of Informatics and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi, 333403, China
2 School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou, Guangdong 510320, China
@article{CRMATH_2018__356_1_63_0,
     author = {Xu, Hong-Yan and Kong, Yin-Ying},
     title = {The approximation of {Laplace{\textendash}Stieltjes} transformations with finite order on the left half plane},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {63--76},
     publisher = {Elsevier},
     volume = {356},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crma.2017.11.011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.crma.2017.11.011/}
}
TY  - JOUR
AU  - Xu, Hong-Yan
AU  - Kong, Yin-Ying
TI  - The approximation of Laplace–Stieltjes transformations with finite order on the left half plane
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 63
EP  - 76
VL  - 356
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.crma.2017.11.011/
DO  - 10.1016/j.crma.2017.11.011
LA  - en
ID  - CRMATH_2018__356_1_63_0
ER  - 
%0 Journal Article
%A Xu, Hong-Yan
%A Kong, Yin-Ying
%T The approximation of Laplace–Stieltjes transformations with finite order on the left half plane
%J Comptes Rendus. Mathématique
%D 2018
%P 63-76
%V 356
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.crma.2017.11.011/
%R 10.1016/j.crma.2017.11.011
%G en
%F CRMATH_2018__356_1_63_0
Xu, Hong-Yan; Kong, Yin-Ying. The approximation of Laplace–Stieltjes transformations with finite order on the left half plane. Comptes Rendus. Mathématique, Volume 356 (2018) no. 1, pp. 63-76. doi : 10.1016/j.crma.2017.11.011. http://www.numdam.org/articles/10.1016/j.crma.2017.11.011/

[1] Batty, C.J.K. Tauberian theorem for the Laplace–Stieltjes transform, Trans. Amer. Math. Soc., Volume 322 (1990) no. 2, pp. 783-804

[2] Knopp, K. Über die Konvergenzabszisse des Laplace-Integrals, Math. Z., Volume 54 (1951), pp. 291-296

[3] Kong, Y.Y. Laplace–Stieltjes transform of infinite order in the right half-plane, Acta Math. Sin. A, Volume 55 (2012) no. 1, pp. 141-148

[4] Kong, Y.Y.; Sun, D.C. On the growth of zero order Laplace–Stieltjes transform convergent in the right half-plane, Acta Math. Sci. B, Volume 28 (2008) no. 2, pp. 431-440

[5] Kong, Y.Y.; Sun, D.C. On type-function and the growth of Laplace–Stieltjes transformations convergent in the right half-plane, Adv. Math., Volume 37 (2007) no. 2, pp. 197-205 (in Chinese)

[6] Kong, Y.Y.; Huo, Y.Y. On generalized orders and types of Laplace–Stieltjes transforms analytic in the right half-plane, Acta Math. Sin. A, Volume 59 (2016), pp. 91-98

[7] Liu, M.S. The regular growth of Dirichlet series of finite order in the half-plane, J. Syst. Sci. Math. Sci., Volume 22 (2002) no. 2, pp. 229-238

[8] Luo, X.; Kong, Y.Y. On the order and type of Laplace–Stieltjes transforms of slow growth, Acta Math. Sci. A, Volume 32 (2012), pp. 601-607

[9] Mishkelyavichyus, A. A Tauberian theorem for the Laplace–Stieltjes integral and the Dirichlet series, Litov. Mat. Sb., Volume 29 (1989) no. 4, pp. 745-753 (in Russian)

[10] Shang, L.N.; Gao, Z.S. The growth of entire functions of infinite order represented by Laplace–Stieltjes transformation, Acta Math. Sci. A, Volume 27 (2007) no. 6, pp. 1035-1043 (in Chinese)

[11] Shang, L.N.; Gao, Z.S. The value distribution of analytic functions defined by Laplace–Stieltjes transforms, Acta Math. Sin. (Chin. Ser.), Volume 51 (2008) no. 5, pp. 993-1000

[12] Sun, D.C. On the distribution of values of random Dirichlet series II, Chin. Ann. Math., Ser. B, Volume 11 (1990) no. 1, pp. 33-44

[13] Wang, P. The P(R) type of Laplace–Stieltjes transform in the right half-plane, J. Central China Normer Univ., Volume 21 (1987) no. 1, pp. 17-25 (in Chinese)

[14] Wang, P. The P(R) order of analytic function defined by Laplace–Stieltjes transform, J. Math., Volume 8 (1988) no. 3, pp. 287-296 (in Chinese)

[15] Xu, H.Y.; Xuan, Z.X. The growth and value distribution of Laplace–Stieltjes transformations with infinite order in the right half-plane, J. Inequal. Appl., Volume 2013 (2013)

[16] Xu, H.Y.; Yi, C.F.; Cao, T.B. On proximate order and type functions of Laplace–Stieltjes transformations convergent in the right half-plane, Math. Commun., Volume 17 (2012), pp. 355-369

[17] Xu, H.Y.; Xuan, Z.X. The singular points of analytic functions with finite X-order defined by Laplace–Stieltjes transformations, J. Funct. Spaces, Volume 2015 (2015)

[18] Yu, J.R. Borel's line of entire functions represented by Laplace–Stieltjes transformation, Acta Math. Sin., Volume 13 (1963), pp. 471-484 (in Chinese)

[19] Yu, J.R. Dirichlet Series and the Random Dirichlet Series, Science Press, Beijing, 1997

[20] Yu, J.R. Some properties of random Dirichlet series, Acta Math. Sin., Volume 21 (1978), pp. 97-118 (in Chinese)

[21] Yu, J.R. Sur les droites de Borel de certaines fonction entières, Ann. Sci. Éc. Norm. Supér., Volume 68 (1951) no. 3, pp. 65-104

[22] Yu, J.R.; Sun, D.C. On the Distribution of Values of Random Dirichlet Series (I), Lect. Comput. Anal., World Scientific, Singapore, 1988

Cited by Sources:

The first author was supported by the Natural Science Foundation of China (11561033, 11301233), the Natural Science Foundation of Jiangxi Province (20151BAB201008), and the Foundation of Education Department of Jiangxi of China (GJJ150902). The second author holds the Project Supported by Guangdong Natural Science Foundation (2015A030313628) and the Training plan for Outstanding Young Teachers in Higher Education of Guangdong (Yqgdufe1405).